【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為( )![]()
A.2
B.2.4
C.2.6
D.3
【答案】B
【解析】先求證四邊形AFPE是矩形,再根據(jù)直線外一點(diǎn)到直線上任一點(diǎn)的距離,垂線段最短,利用相似三角形對應(yīng)邊成比例即可求得AP最短時的長,然后即可求出AM最短時的長.
![]()
連結(jié)AP,在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四邊形AFPE是矩形,
∴EF=AP.
∵M(jìn)是EF的中點(diǎn),
∴AM=
AP,
根據(jù)直線外一點(diǎn)到直線上任一點(diǎn)的距離,垂線段最短,
即AP⊥BC時,AP最短,同樣AM也最短,
∴當(dāng)AP⊥BC時,△ABP∽△CBA,
∴
,
∴
,
∴AP最短時,AP=4.8
∴當(dāng)AM最短時,AM=
=2.4.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用垂線段最短和直角三角形斜邊上的中線的相關(guān)知識可以得到問題的答案,需要掌握連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;直角三角形斜邊上的中線等于斜邊的一半.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(點(diǎn)D不與A,C重合),給出以下個結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE=
S△ABC , 上述結(jié)論中始終正確的有( ) ![]()
A.①②③
B.②③④
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點(diǎn)O , 以AD為邊向外作Rt△ADE , ∠AED=90°,連接OE , DE=6,OE=
,則另一直角邊AE的長為( ).![]()
A.![]()
B.2
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對應(yīng)點(diǎn),點(diǎn)D′與點(diǎn)D是對應(yīng)點(diǎn)),點(diǎn)B′恰好落在BC邊上,則∠C=![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下圖,思考問題:![]()
(1)你認(rèn)識上面的圖片中的哪些物體?
(2)這些物體的表面形狀類似與哪些幾何體?說說你的理由。
(3)你能再舉出一些常見的圖形嗎?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com