分析 作出圖形,根據(jù)等腰三角形三線合一的性質(zhì)可知底邊上的高也是底邊的中線,求出三角形被分成兩個(gè)等腰直角三角形,求出兩底角,再根據(jù)三角形的內(nèi)角和定理即可求出頂角的度數(shù).
解答 解:如圖,根據(jù)題意,AD=$\frac{1}{2}$BC,![]()
∵△ABC是等腰三角形,且AB=AC,AD⊥BC,
∴BD=CD,
∴△ABD,△ACD是等腰直角三角形,
∴∠B=∠C=45°,
∴∠BAC=180°-45°×2=90°,
即這個(gè)等腰三角形的頂角度數(shù)是90°.
故答案為:90°.
點(diǎn)評(píng) 本題考查了等腰三角形三線合一的性質(zhì),等腰三角形的兩底角相等的性質(zhì),作出圖形形象直觀,更有助于問(wèn)題的解決.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 3.14 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}×\sqrt{\frac{1}{2}}$=1 | B. | $\sqrt{4}-\sqrt{3}=1$ | C. | $\sqrt{6}÷\sqrt{3}$=2 | D. | $\sqrt{8}=±\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{16}$ | B. | $\sqrt{5}$ | C. | $\sqrt{18}$ | D. | $\sqrt{\frac{1}{7}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com