分析 首先根據(jù)四邊形內(nèi)角和可得∠ADC+∠DCB=360°-200°=160°,再根據(jù)角平分線的性質(zhì)可得∠ODC+∠OCD=$\frac{1}{2}$×160°=80°,再進(jìn)一步利用三角形內(nèi)角和定理可得答案.
解答 解:∵四邊形ABCD中,∠A+∠B=200°,
∴∠ADC+∠DCB=360°-200°=160°,
∵∠ADC、∠DCB的平分線相交于點(diǎn)O,
∴∠ODC=$\frac{1}{2}$∠ADC,∠OCD=$\frac{1}{2}$∠BCD,
∴∠ODC+∠OCD=$\frac{1}{2}$×160°=80°,
∴∠COD=180°-80°=100°.
點(diǎn)評(píng) 此題主要考查了多邊形內(nèi)角和定理,關(guān)鍵是掌握多邊形內(nèi)角和定理:(n-2).180 (n≥3)且n為整數(shù)).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com