欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2013•張家界)如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動點(diǎn),點(diǎn)F是線段OD上的動點(diǎn),問:在P點(diǎn)和F點(diǎn)移動過程中,△PCF的周長是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.
分析:(1)利用待定系數(shù)法求出直線解析式;
(2)利用待定系數(shù)法求出拋物線的解析式;
(3)關(guān)鍵是證明△CEQ與△CDO均為等腰直角三角形;
(4)如答圖②所示,作點(diǎn)C關(guān)于直線QE的對稱點(diǎn)C′,作點(diǎn)C關(guān)于x軸的對稱點(diǎn)C″,連接C′C″,交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長最小的三角形,由軸對稱的性質(zhì)可知,△PCF的周長等于線段C′C″的長度.
利用軸對稱的性質(zhì)、兩點(diǎn)之間線段最短可以證明此時(shí)△PCF的周長最小.
如答圖③所示,利用勾股定理求出線段C′C″的長度,即△PCF周長的最小值.
解答:解:(1)∵C(0,1),OD=OC,∴D點(diǎn)坐標(biāo)為(1,0).
設(shè)直線CD的解析式為y=kx+b(k≠0),
將C(0,1),D(1,0)代入得:
1=b
k+b=0
,
解得:b=1,k=-1,
∴直線CD的解析式為:y=-x+1.

(2)設(shè)拋物線的解析式為y=a(x-2)2+3,
將C(0,1)代入得:1=a×(-2)2+3,解得a=-
1
2

∴y=-
1
2
(x-2)2+3=-
1
2
x2+2x+1.

(3)證明:由題意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD為等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x軸,則點(diǎn)C、E關(guān)于對稱軸(直線x=2)對稱,
∴點(diǎn)E的坐標(biāo)為(4,1).
如答圖①所示,設(shè)對稱軸(直線x=2)與CE交于點(diǎn)M,則M(2,1),
∴ME=CM=QM=2,∴△QME與△QMC均為等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD為等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.

(4)存在.
如答圖②所示,作點(diǎn)C關(guān)于直線QE的對稱點(diǎn)C′,作點(diǎn)C關(guān)于x軸的對稱點(diǎn)C″,連接C′C″,交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長最小的三角形,由軸對稱的性質(zhì)可知,△PCF的周長等于線段C′C″的長度.
(證明如下:不妨在線段OD上取異于點(diǎn)F的任一點(diǎn)F′,在線段QE上取異于點(diǎn)P的任一點(diǎn)P′,連接F′C″,F(xiàn)′P′,P′C′.
由軸對稱的性質(zhì)可知,△P′CF′的周長=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是點(diǎn)C′,C″之間的折線段,
由兩點(diǎn)之間線段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周長大于△PCE的周長.)
如答圖③所示,連接C′E,
∵C,C′關(guān)于直線QE對稱,△QCE為等腰直角三角形,
∴△QC′E為等腰直角三角形,
∴△CEC′為等腰直角三角形,
∴點(diǎn)C′的坐標(biāo)為(4,5);
∵C,C″關(guān)于x軸對稱,∴點(diǎn)C″的坐標(biāo)為(0,-1).
過點(diǎn)C′作C′N⊥y軸于點(diǎn)N,則NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=
NC2+NC2
=
42+62
=2
13

綜上所述,在P點(diǎn)和F點(diǎn)移動過程中,△PCF的周長存在最小值,最小值為2
13
點(diǎn)評:本題是中考壓軸題,綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、相似三角形、等腰直角三角形、勾股定理、軸對稱的性質(zhì)等重要知識點(diǎn),涉及考點(diǎn)較多,有一點(diǎn)的難度.本題難點(diǎn)在于第(4)問,如何充分利用軸對稱的性質(zhì)確定△PCF周長最小時(shí)的幾何圖形,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)下列運(yùn)算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)把不等式組
x>1
2x-1≤5
的解集在數(shù)軸上表示正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)下面四個(gè)幾何體中,俯視圖不是圓形的幾何體的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)下列各式中能用完全平方公式進(jìn)行因式分解的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)順次連接等腰梯形四邊中點(diǎn)所得的四邊形一定是(  )

查看答案和解析>>

同步練習(xí)冊答案