【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC和∠BOC互補(bǔ),則弦BC的長度為 . ![]()
【答案】4 ![]()
【解析】解:過點(diǎn)O作OD⊥BC于D, 則BC=2BD,
∵△ABC內(nèi)接于⊙O,∠BAC與∠BOC互補(bǔ),
∴∠BOC=2∠A,∠BOC+∠A=180°,
∴∠BOC=120°,
∵OB=OC,
∴∠OBC=∠OCB=
(180°﹣∠BOC)=30°,
∵⊙O的半徑為4,
∴BD=OBcos∠OBC=4×
=2
,
∴BC=4
.
故答案為:4
.![]()
首先過點(diǎn)O作OD⊥BC于D,由垂徑定理可得BC=2BD,又由圓周角定理,可求得∠BOC的度數(shù),然后根據(jù)等腰三角形的性質(zhì),求得∠OBC的度數(shù),利用余弦函數(shù),即可求得答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,2),連接AB,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP、BP,當(dāng)△ABP的周長最小時(shí),對應(yīng)的點(diǎn)P的坐標(biāo)和△ABP的最小周長分別為( )
![]()
A. (1,0),
B. (3,0),
C. (2,0),
D. (2,0), ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,∠AOE=∠DOF=90°,OP是∠BOC的平分線,∠AOD=40°.
(1)求∠EOP的度數(shù);
(2)寫出∠AOD的補(bǔ)角和余角.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=
AB=
CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.![]()
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)內(nèi)的環(huán)形路是邊長為1000米的正方形ABCD.現(xiàn)有1號、2號兩輛游覽車分別從出口A和景點(diǎn)C同時(shí)出發(fā),1號車順時(shí)針、2號車逆時(shí)針沿環(huán)形路連續(xù)循環(huán)行駛,供游客隨時(shí)免費(fèi)乘車(上、下車的時(shí)間忽略不計(jì)),兩車速度均為200米/分,設(shè)行駛時(shí)間為t分,解決下列問題:
(1)當(dāng)0≤t≤10時(shí),分別寫出1號車、2號車在左半環(huán)線離出口A的路程(用含t的代數(shù)式表示);
(2)當(dāng)0≤t≤10時(shí),求當(dāng)兩車相距的路程是400米時(shí)的t值;
(3)當(dāng)t為何值時(shí),1號車第三次恰好經(jīng)過景點(diǎn)C?并直接寫出這一段時(shí)間內(nèi)它與2號車相遇的次數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB=20cm.
(1)如圖1,點(diǎn)P沿線段AB自A點(diǎn)向B點(diǎn)以2厘米/秒運(yùn)動(dòng),點(diǎn)P出發(fā)2秒后,點(diǎn)Q沿線段BA自B點(diǎn)向A點(diǎn)以3厘米/秒運(yùn)動(dòng),問再經(jīng)過幾秒后P、Q相距5cm?
(2)如圖2:AO=4厘米,PO=2厘米,∠POB=60°,點(diǎn)P繞著點(diǎn)O以60°/秒的速度逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BA自B點(diǎn)向A點(diǎn)運(yùn)動(dòng),假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q運(yùn)動(dòng)的速度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
![]()
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在彈性限度內(nèi),彈簧掛上物體后會(huì)伸長,測得彈簧的長度
與所掛物體的質(zhì)量
之間有如下表關(guān)系:
|
|
|
|
|
| … |
|
|
|
|
|
| … |
下列說法不正確的是( )
A.
隨
的增大而增大 B. 所掛物體質(zhì)量每增加
彈簧長度增加![]()
C. 所掛物體為
時(shí),彈簧長度為
D. 不掛重物時(shí)彈簧的長度為![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com