分析 (1)證明:連接OP,
∵四邊形ABCD是正方形,
∴∠B=∠C=∠D=90°,AB=BC,
∵PF平分∠AFC,
∴∠AFP=∠PFC,
∵OP=OF,
∴∠AFP=∠OPF,
∴∠PFC=∠OPF,
∴OP∥CD,
∴∠BPO=∠C=90°,
∴OP⊥BC,
∴BC是⊙O的切線;
(2)解:連接AP,∵∠D=90°,∴AF是⊙O的直徑,
∴∠AEF=∠APF=90°,
∴∠BEF=∠B=∠C=90°,![]()
∵OP∥CD,∴OP∥CD∥BA,
∴$\frac{AO}{AF}=\frac{BP}{BC}=\frac{1}{2}$,
∴BP=$\frac{1}{2}$BC=$\frac{1}{2}$BA,
∵∠APB+∠FPC=90°,∠PFC+∠FPC=90°,
∴∠APB=∠PFC,
∵∠B=∠C=90°,
∴△APB∽△PFC,
∴$\frac{FC}{PB}=\frac{CP}{BA}=\frac{1}{2}$,∴$\frac{FC}{CP}=\frac{PB}{BA}=\frac{1}{2}$,
∴PC=2FC=4.
解答 (1)證明:連接OP,
∵四邊形ABCD是正方形,
∴∠B=∠C=∠D=90°,AB=BC,
∵PF平分∠AFC,
∴∠AFP=∠PFC,
∵OP=OF,
∴∠AFP=∠OPF,
∴∠PFC=∠OPF,
∴OP∥CD,
∴∠BPO=∠C=90°,
∴OP⊥BC,
∴BC是⊙O的切線;
(2)解:連接AP,∵∠D=90°,∴AF是⊙O的直徑,
∴∠AEF=∠APF=90°,
∴∠BEF=∠B=∠C=90°,![]()
∵OP∥CD,∴OP∥CD∥BA,
∴$\frac{AO}{AF}=\frac{BP}{BC}=\frac{1}{2}$,
∴BP=$\frac{1}{2}$BC=$\frac{1}{2}$BA,
∵∠APB+∠FPC=90°,∠PFC+∠FPC=90°,
∴∠APB=∠PFC,
∵∠B=∠C=90°,
∴△APB∽△PFC,
∴$\frac{FC}{PB}=\frac{CP}{BA}=\frac{1}{2}$,∴$\frac{FC}{CP}=\frac{PB}{BA}=\frac{1}{2}$,
∴PC=2FC=4.
點(diǎn)評 本題考查了切線的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理,圓周角定理,正確的作出輔助線是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年貴州省七年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題
如圖,若△DEF是由△ABC經(jīng)過平移后得到的,則平移的距離是( )
![]()
A. 線段BC的長度 B. 線段BE的長度 C. 線段EC的長度 D. 線段EF的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2015$\sqrt{3}$,2017 | B. | 2016$\sqrt{3}$,2018 | C. | 2017$\sqrt{3}$,2019 | D. | 2017$\sqrt{3}$,2017 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com