【題目】如圖,已知
為
的直徑,
、
是
的弦,
是
的切線(xiàn),切點(diǎn)為
,
,
、
的延長(zhǎng)線(xiàn)相交于點(diǎn)
.
![]()
(1)求證:
是
的切線(xiàn);
(2)若
,
,求
的半徑.
(3)在(2)中的條件下,
,將
以點(diǎn)
為中心逆時(shí)針旋轉(zhuǎn)
,求
掃過(guò)的圖形的面積(結(jié)果用
表示).
【答案】(1)見(jiàn)解析;(2)圓
的半徑為4;(3)BD掃過(guò)的圖形的面積為![]()
【解析】
(1)如圖1(見(jiàn)解析),連接DO,先根據(jù)平行線(xiàn)的性質(zhì)和等腰三角形的性質(zhì)推出
,再由
定理判定
,從而可得
,最后根據(jù)圓的切線(xiàn)的判定定理即可證;
(2)根據(jù)題(1)的結(jié)論,在
中,利用勾股定理即可得;
(3)如圖2(見(jiàn)解析),先確定陰影部分為BD所掃過(guò)的圖形,再利用扇形和三角形的面積公式求解即可.
(1)如圖1,連結(jié)![]()
∵![]()
∴![]()
又∵![]()
∴![]()
∴![]()
在
和
中,![]()
![]()
∴![]()
∵
是圓
的切線(xiàn)
∴![]()
∴![]()
又∵點(diǎn)
在圓
上,OD為圓O的半徑
∴
是圓
的切線(xiàn);
(2)如圖1,設(shè)圓
的半徑為r
則![]()
由題(1)的結(jié)論,
是直角三角形
則
,即
,解得![]()
故圓
的半徑為4;
(3)如圖2,由旋轉(zhuǎn)的過(guò)程得:陰影部分為BD所掃過(guò)的圖形
由題(2)可知![]()
![]()
![]()
![]()
![]()
由旋轉(zhuǎn)的性質(zhì)得,
和
的面積相等
則
所掃過(guò)的圖形面積為:![]()
空白區(qū)域的面積為:![]()
因此,![]()
故
掃過(guò)的圖形的面積為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)。
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫(huà)出平移后得到的△A1B1C1
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2,并直接寫(xiě)出點(diǎn)B2、C2的坐標(biāo);
(3)在第(2)問(wèn)中,點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的過(guò)程中運(yùn)動(dòng)的路徑長(zhǎng)是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠BAC=60°,延長(zhǎng)BA至點(diǎn)P使AP=AC, 作CD平分∠ACB交AB于點(diǎn)E,交⊙O于點(diǎn)D. 連結(jié)PC,BD.
(1)求證:PC為⊙O的切線(xiàn);
(2)求證:BD=
PA;
(3)若PC=
,求AE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臨近期末考試,心理專(zhuān)家建議考生可通過(guò)以下四種方式進(jìn)行考前減壓:
.享受美食,
.交流談心,
.體育鍛煉,
.欣賞藝術(shù).
(1)隨機(jī)采訪(fǎng)一名九年級(jí)考生,選擇其中某一種方式,他選擇“享受美食”的概率是 .
(2)同時(shí)采訪(fǎng)兩名九年級(jí)考生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術(shù)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),其中AB=4,∠AOC=120°,P為⊙O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線(xiàn)段CQ的最大值為( 。
![]()
A. 3 B. 1+
C. 1+3
D. 1+![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0),B(3,0).請(qǐng)解答下列問(wèn)題:
![]()
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E(2,m)在拋物線(xiàn)上,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)H,點(diǎn)F是AE中點(diǎn),連接FH,求線(xiàn)段FH的長(zhǎng).
注:拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸是x=
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB上一點(diǎn),以AD為直徑作⊙O交AC于E,與BC相切于點(diǎn)F,連接AF.
(1)求證:∠BAF=∠CAF;
(2)若AC=3,BC=4,求BD和CE的長(zhǎng);
(3)在(2)的條件下,若AF與DE交于H,求FHFA的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是邊BC上的一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接AE,連接DE并延長(zhǎng)交射線(xiàn)AP于點(diǎn)F,連接BF
![]()
(1)若
,直接寫(xiě)出
的大。ㄓ煤
的式子表示).
(2)求證:
.
(3)連接CF,用等式表示線(xiàn)段AF,BF,CF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=60°,∠ABC=45°,AB=4
,點(diǎn)D為AC上一動(dòng)點(diǎn),以BD為直徑的⊙O交BC于點(diǎn)E,交AB于點(diǎn)F,則EF的最小值是______.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com