分析 (1)根據(jù)平行四邊形的性質(zhì)得AD∥BC,AD=BC,OB=OD,則利用DM∥BC可判斷△MND∽△CNB,所以MD:BC=DN:BN=1:2,設(shè)OB=OD=x,則BD=2x,BN=OB+ON=x+1,DN=x-1,于是得到x+1=2(x-1),解得x=3,所以BD=2x=6;
(2)如圖,在OD上截取NG=ON,延長OC到H,使HC=OC,則△HOG滿足條件.
解答 解:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,OB=OD,
∴DM∥BC,
∴△MND∽△CNB,
∴MD:BC=DN:BN,
∵M(jìn)為AD中點(diǎn),
∴MD:BC=1:2,
∴DN:BN=1:2,即BN=2DN,
設(shè)OB=OD=x,則BD=2x,BN=OB+ON=x+1,DN=x-1,
∴x+1=2(x-1),解得x=3,
∴BD=2x=6;
(2)如圖,△HOG為所作.![]()
點(diǎn)評 本題考查了作圖-位似變換:先確定位似中心;②分別連接并延長位似中心和能代表原圖的關(guān)鍵點(diǎn);再根據(jù)位似比,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);然后順次連接上述各點(diǎn),得到放大或縮小的圖形.也考查了平行四邊形的性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{24}$ | B. | $\sqrt{{x}^{2}-1}$ | C. | $\sqrt{\frac{1}{2}}$ | D. | $\sqrt{{a}^{3}b}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 2a+2b | C. | -2a-2c | D. | 2b-2c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com