
解:由題意得
(1)∵AC=

,CO=1,
∴AO=

=2,
∴A(0,2),
做BF⊥OC,
∵BC=AC,∠AOC=∠BFC,
∠CAO=∠BCF,
∴△BFC≌△COA,
∴CF=AO=2,
∴B(-3,1)
故答案為:A(0,2),B(-3,1).
(2)將B(-3,1)代入y=ax
2+ax-2得:
1=9a-3a-2,
∴a=

,
∴y=

x
2+

x-2.
(3)如圖1,可求得拋物線的頂點D(-

,

).
設直線BD的關系式為y=kx+b,將點B、D的坐標代入,

求得k=-

,b=-

,
∴BD的關系式為y=-

x-

.
設直線BD和x軸交點為E,則點E(

,0),CE=

.
∴△DBC的面積為S
CBE+S
CED=

×

×1+

×

×

,
=

.
(4)如圖2,過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,
過點C″作C″P⊥y軸于點P.
在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM-∠AMB'-∠ANB,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,

∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點C′(2,1);
將點B′、C′的坐標代入y=

x
2+

x-2,可知點B′、C′在拋物線上.
(事實上,點P與點N重合)
分析:(1)求A點的坐標就是求OA的長,可在直角三角形OAC中,根據(jù)AC=

,OC=1來求出OA的長,即可得出A的坐標.如果過B作x軸的垂線,假設垂足為F,那么△ACO≌△CBH,OA=CF,BF=OC,由此可求出B的坐標;
(2)將已經(jīng)求出的A,B的坐標代入拋物線的解析式中即可求出拋物線的解析式;
(3)根據(jù)(2)的函數(shù)關系式即可求出D點的坐標.求△DBC的面積時,可將△DBC分成△CBE和△DCE兩部分(假設BD交x軸于E).可先根據(jù)B,D的坐標求出BD所在直線的解析式,進而求出E點的坐標,那么可求出CE的長,然后以B,D兩點的縱坐標的絕對值分別作為△BCE和△DCE的高,即可求出△DBC的面積;
(4)本題的關鍵是求出B′,C′兩點的坐標.過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,過點C″作C″P⊥y軸于點P.然后仿照(1)中求坐標時的方法,通過證Rt△AB′M≌Rt△BAN來得出B′的坐標.同理可得出C′的坐標.然后將兩點的坐標分別代入拋物線的解析式中,進而可判斷出兩點是否在拋物線上.
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉(zhuǎn)變換等重要知識點;綜合性強,考查學生數(shù)形結(jié)合的數(shù)學思想方法.