(1)證明:旋轉(zhuǎn)△BCF使BC與CD重合,
∵AD∥BC,AB=DC,即梯形ABCD為等腰梯形,
∴∠A=∠ADC,∠A+∠ABC=180°,
∴∠ADC+∠ABC=180°,
由旋轉(zhuǎn)可知:∠ABC=∠CDF′,
∴∠ADC+∠CDF′=180°,即∠ADF′為平角,
∴A,D,F(xiàn)′共線,
∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,
∴△FCE≌△F′CE,
∴EF′=EF=DF′+ED,
∴BF=EF-ED;

(2)解:∵AB=BC,∠B=80°,
∴∠ACB=50°,
由(1)得∠FEC=∠DEC=70°,
∴∠ECB=70°,
而∠B=∠BCD=80°,
∴∠DCE=10°,
∴∠BCF=30°,
∴∠ACF=∠BCA-∠BCF=20°.

分析:(1)旋轉(zhuǎn)△BCF使BC與CD重合,從而根據(jù)SAS證得△FCE≌△F′CE,從而可證得結論.
(2)根據(jù)等腰三角形的性質(zhì)可得出∠BAC=∠BCA=50°,∠DEC=∠FEC=∠ECB=70°,從而可得出∠DCE的度數(shù),也就得出了∠BCF的度數(shù),再結合∠BCA=50°即可得出答案.
點評:本題考查旋轉(zhuǎn)的性質(zhì)等腰梯形的性質(zhì)及全等三角形的判定及性質(zhì),綜合性較強,解答本題的關鍵將△BCF旋轉(zhuǎn)使BC與CD重合,這是本題的突破口.