
(1)證明:連接OA,
∵BC為⊙O的直徑,
∴∠BAC=90°,
∴∠B+∠ACB=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAD=∠B,
∴∠CAD+∠OAC=90°,
即∠OAD=90°,
∴OA⊥AD,
∵點A在圓上,
∴AD是⊙O的切線;
(2)解:∵CE⊥AD,
∴∠CED=∠OAD=90°,
∴CE∥OA,
∴△CED∽△OAD,
∴

,CE=2,
設(shè)CD=x,則OD=x+8,
即

,
解得x=

,
經(jīng)檢驗x=

是原分式方程的解,
所以CD=

.
分析:(1)首先連接OA,由BC為⊙O直徑,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,則可證得AD是⊙O的切線;
(2)易證得△CED∽△OAD,然后設(shè)CD=x,則OD=x+8,由相似三角形的對應(yīng)邊成比例,可得方程:

,繼而求得答案.
點評:此題考查了切線的判定、相似三角形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.