如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說明理由.
![]()
考點(diǎn):
二次函數(shù)綜合題.
分析:
(1)首先求出點(diǎn)A、B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;
(2)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),根據(jù)已知條件求出點(diǎn)E坐標(biāo)為(m,8+m);由于點(diǎn)E在拋物線上,則可以列出方程求出m的值.在計(jì)算四邊形CAEB面積時(shí),利用S四邊形CAEB=S△ACE+S梯形OCEB﹣S△BCO,可以簡化計(jì)算;
(3)由于△ACD為等腰直角三角形,而△DBE和△DAC相似,則△DBE必為等腰直角三角形.分兩種情況討論,要點(diǎn)是求出點(diǎn)E的坐標(biāo),由于點(diǎn)E在拋物線上,則可以由此列出方程求出未知數(shù).
解答:
解:(1)在直線解析式y(tǒng)=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4).
∵點(diǎn)A(﹣4,0),B(0,4)在拋物線y=﹣x2+bx+c上,
∴
,
解得:b=﹣3,c=4,
∴拋物線的解析式為:y=﹣x2﹣3x+4.
(2)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),則OC=﹣m,AC=4+m.
∵OA=OB=4,∴∠BAC=45°,
∴△ACD為等腰直角三角形,∴CD=AC=4+m,
∴CE=CD+DE=4+m+4=8+m,
∴點(diǎn)E坐標(biāo)為(m,8+m).
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,
∴8+m=﹣m2﹣3m+4,解得m=﹣2.
∴C(﹣2,0),AC=OC=2,CE=6,
S四邊形CAEB=S△ACE+S梯形OCEB﹣S△BCO=
×2×6+
(6+4)×2﹣
×2×4=12.
(3)設(shè)點(diǎn)C坐標(biāo)為(m,0)(m<0),則OC=﹣m,CD=AC=4+m,BD=
OC=﹣
m,則D(m,4+m).
∵△ACD為等腰直角三角形,△DBE和△DAC相似
∴△DBE必為等腰直角三角形.
i)若∠BED=90°,則BE=DE,
∵BE=OC=﹣m,
∴DE=BE=﹣m,
∴CE=4+m﹣m=4,
∴E(m,4).
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣3,
∴D(﹣3,1);
ii)若∠EBD=90°,則BE=BD=﹣
m,
在等腰直角三角形EBD中,DE=
BD=﹣2m,
∴CE=4+m﹣2m=4﹣m,
∴E(m,4﹣m).
∵點(diǎn)E在拋物線y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合題意,舍去)或m=﹣2,
∴D(﹣2,2).
綜上所述,存在點(diǎn)D,使得△DBE和△DAC相似,點(diǎn)D的坐標(biāo)為(﹣3,1)或(﹣2,2).
點(diǎn)評(píng):
本題考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì)、函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法、相似三角形、等腰直角三角形、圖象面積計(jì)算等重要知識(shí)點(diǎn).第(3)問需要分類討論,這是本題的難點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com