
解:(1)∵正方形ABCD中,∠ABC=90°,
∴∠EBG=90°,
∴?BEFG是矩形
(2)90°;
理由:延長GP交DC于點H,
∵正方形ABCD和平行四邊形BEFG中,AB∥DC,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
∵P是線段DF的中點,
∴DP=FP,
∴△DHP≌△FGP,
∴HP=GP,
當(dāng)∠CPG=90°時,∠CPH=∠CPG,
∵CP=CP,
∴△CPH≌△CPG,
∴CH=CG,
∵正方形ABCD中,DC=BC,
∴DH=BG,
∵△DHP≌△FGP,
∴DH=GF,
∴BG=GF,
∴?BEFG是菱形,
由(1)知四邊形BEFG是矩形,
∴四邊形BEFG是正方形.
分析:(1)由正方形ABCD,易得∠EBG=90°,根據(jù)有一個角是直角的平行四邊形是矩形,即可證得四邊形BEFG是矩形;
(2)首先作輔助線:延長GP交DC于點H,根據(jù)正方形與平行四邊形的性質(zhì),利用AAS易得△DHP≌△FGP,則有HP=GP,當(dāng)∠CPG=90°時,利用SAS易證△CPH≌△CPG,根據(jù)全等三角形與正方形的性質(zhì),即可得BG=GF,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得?BEFG是菱形,而∠EBG=90°,即得四邊形BEFG是正方形.
點評:此題考查了正方形的判定與性質(zhì)、矩形的判定與性質(zhì)、菱形的判定以及全等三角形的判定與性質(zhì)等知識.此題綜合性比較強,解題時要注意數(shù)形結(jié)合思想的應(yīng)用.