欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,在Rt△ABC中,∠B=90°,BC=6,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.

(1)求證:AE=DF.(2分)
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明現(xiàn)由.(5分)
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.(5分)

(1)因為DF=t又∵AE=t得AE="DF"  
(2)當(dāng)t=4時,四邊形AEFD為菱形
(3)當(dāng)t=3或時,△DEF為直角三角形

解析試題分析:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF="t."
又∵AE=t,∴AE="DF"
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又AE=DF,∴四邊形AEFD為平行四邊形.
∵∠B=90°,∠C=30°,∴AC=2AB,AB2+BC2=AC2=4AB2,
∵BC=6,∴AB=6,AC=12,∴AD=AC-DC=12-2 t
若使平行四邊形AEFD為菱形,則需AE=AD,
∴t=12-2t,解得t=4,即當(dāng)t=4時,四邊形AEFD為菱形
(3)①∠EDF=90°時,四邊形EBFD為矩形.
在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE,即12-2t=2t,t=3
②∠DEF=90°時,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.
∵∠A=90°-∠C=60°,∠AED=30o,∴AD=AE.
即12-2t=t,∴t=
③∠EFD=90°時,此種情況不存在.
綜上所述,當(dāng)t=3或時,△DEF為直角三角形。
考點:菱形,直角三角形
點評:本題考查菱形,直角三角形,解答本題需要考生掌握菱形的判定方法,會證明一個四邊形是菱形,以及直角三角形的判定方法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案