【題目】如圖,拋物線
與
軸交于點
,對稱軸為直線
,平行于
軸的直線與拋物線交于
、
兩點,點
在對稱軸左側(cè),
.
I.求此拋物線的解析式;
Ⅱ.已知在
軸上存在一點
,使得
的周長最小,求點
的坐標(biāo);
Ⅲ.若過點
的直線
將
的面積分成2:3兩部分,試求直線
的解析式.
![]()
【答案】Ⅰ.
;Ⅱ.點
的坐標(biāo)為
;Ⅲ.直線
解析式為
.
【解析】
I.由對稱軸直線x=2,以及A點坐標(biāo)確定出b與c的值,即可求出拋物線解析式;
Ⅱ.由拋物線的對稱軸及BC的長,確定出B與C的橫坐標(biāo),代入拋物線解析式求出縱坐標(biāo),確定出B與C坐標(biāo),再求出點A關(guān)于x軸的對稱點
,連接
交x軸于點D,則點D即為所求,利用待定系數(shù)法求出
的解析式,即可解決問題.
Ⅲ.利用待定系數(shù)法求出直線AB解析式,過Q作QH⊥y軸,與y軸交于點H,BC與y軸交于點M,由已知面積之比求出QH的長,確定出Q橫坐標(biāo),代入直線AB解析式求出縱坐標(biāo),確定出Q坐標(biāo),再利用待定系數(shù)法求出直線l的解析式.
解:I.由題意得:
,
,
解得
.
∴此拋物線的解析式為
.
Ⅱ.∵拋物線對稱軸為直線
,
,
∴
橫坐標(biāo)為
,
橫坐標(biāo)為1.
把
代入拋物線解析式得:
,
∴
,
.
如圖
,點
關(guān)于
軸的對稱點為點
,
![]()
圖![]()
設(shè)直線
解析式為
,
把
坐標(biāo)代入得:
,即
.
令
,解得
,即點
的坐標(biāo)為
.
Ⅲ.如圖
,設(shè)直線
解析式為
,
![]()
圖b
把
坐標(biāo)代入得
,即
.
設(shè)直線
與
交于點
,過
作
軸,垂足為
,設(shè)
與
軸交于點
,
可得
.
∴
.
∵直線
將
面積分成2:3兩部分,
∴
.
∴
.
∵
,
∴
或
.
當(dāng)
時,把
代入直線
解析式得
,
此時
,直線
解析式為
.
當(dāng)
時,把
代入直線
解析式得
,
此時
,直線
解析式為
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,過點D作FG⊥AC于點F,交AB的延長線于點G.
![]()
(1)求證:GD為⊙O切線;
(2)求證:DE2=EF·AC;
(3)若tan∠C=2,AB=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲兩次,記第一次擲出的點數(shù)為
,第二次擲出的點數(shù)為
,則使關(guān)于
的方程組
只有正數(shù)解的概率為( ).
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC=
,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當(dāng)Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.
![]()
(1)求tanA的值;
(2)設(shè)點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄?/span>S是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點
、
、
、
均在格點上.I.
的長等于______________;Ⅱ.點
在射線
上,點
在射線
上,當(dāng)
的周長最小時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出
,并簡要說明點
,
的位置是如何找到的(不要求證明)____________ .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明放學(xué)后從學(xué);丶,出發(fā)
分鐘時,同桌小強發(fā)現(xiàn)小明的數(shù)學(xué)作業(yè)卷忘記拿了,立即拿著數(shù)學(xué)作業(yè)卷按照同樣的路線去追趕小明,小強出發(fā)
分鐘時,小明才想起沒拿數(shù)學(xué)作業(yè)卷,馬上以原速原路返回,在途中與小強相遇.兩人離學(xué)校的路程
(米)與小強所用時間
(分鐘)之間的函數(shù)圖象如圖所示.
(1)求函數(shù)圖象中
的值;
(2)求小強的速度;
(3)求線段
的函數(shù)解析式,并寫出自變量的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七年級學(xué)生的體重情況,隨機抽取了七年級m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
![]()
請根據(jù)圖表信息回答下列問題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?
(3)如果該校七年級有1000名學(xué)生,請估算七年級體重低于47.5千克的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為 ;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com