△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.![]()
(1)如圖(1)當(dāng)射線DN經(jīng)過點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.
(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的
時(shí),求線段EF的長(zhǎng).
考點(diǎn):
相似三角形的判定與性質(zhì);等腰三角形的性質(zhì);勾股定理;旋轉(zhuǎn)的性質(zhì)。
專題:
幾何綜合題。
分析:
(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出相似三角形即可;
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出
,進(jìn)而得出△BDF∽△CED∽△DEF.
(3)首先利用△DEF的面積等于△ABC的面積的
,求出DH的長(zhǎng),進(jìn)而利用S△DEF的值求出EF即可.
解答:
(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.
證明:∵AB=AC,D為BC的中點(diǎn),
∴AD⊥BC,∠B=∠C,∠BAD=∠CAD,
又∵∠MDN=∠B,
∴△ADE∽ABD,
同理可得:△ADE∽△ACD,
∵∠MDN=∠C=∠B,
∠B+∠BAD=90°,∠ADE+∠EDC=90°,
∠B=∠MDN,
∴∠BAD=∠EDC,
∵∠B=∠C,
∴△ABD∽△DCE,
∴△ADE∽△DCE,
(2)△BDF∽△CED∽△DEF,
證明:∵∠B+∠BDF+∠BFD=180°
∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE,
由AB=AC,得∠B=∠C,
∴△BDF∽△CED,
∴
.
∵BD=CD,
∴
.
又∵∠C=∠EDF,
∴△BDF∽△CED∽△DEF.
(3)連接AD,過D點(diǎn)作DG⊥EF,DH⊥BF,垂足分別為G,H.
∵AB=AC,D是BC的中點(diǎn),
∴AD⊥BC,BD=
BC=6.
在Rt△ABD中,AD2=AB2﹣BD2,
∴AD=8
∴S△ABC=
BC•AD=
×12×8=48.
S△DEF=
S△ABC=
×48=12.
又∵
AD•BD=
AB.DH,
∴DH=
=
=
,
∵△BDF∽△DEF,
∴∠DFB=∠EFD
∵DG⊥EF,DH⊥BF,
∴DH=DG=
.
∵S△DEF=
×EF×DG=12,
∴EF=
=5.
![]()
![]()
點(diǎn)評(píng):
此題主要考查了相似三角形判定與性質(zhì)以及三角形面積計(jì)算,熟練應(yīng)用相似三角形的性質(zhì)與判定得出對(duì)應(yīng)用邊與對(duì)應(yīng)角的關(guān)系是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| CD | DA |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com