分析 (1)根據(jù)AAS即可判斷;
(2)過點D作DE⊥AB于點E,過點D作DF⊥AC于點F.首先證明△BDE≌△CDF(AAS),推出BE=CF,DE=DF,再證明Rt△AED≌Rt△AFD,推出AE=AF即可解決問題;
解答 解:(1)△ABD≌△ACD的理由是AAS,
故答案為AAS.
(2)證明:過點D作DE⊥AB于點E,過點D作DF⊥AC于點F.![]()
∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.
∴△BDE≌△CDF(AAS).
∴BE=CF,DE=DF.
在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.
∵AD=AD,DE=DF,
∴Rt△AED≌Rt△AFD.
∴AE=AF.
∴AE+BE=AF+CF.
即AB=AC.
點評 本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 方案一 | A | B | |
| 標價(單位:元) | 90 | 100 | |
| 每件商品返利 | 按標價的30% | 按標價的15% | |
| 例:買一件A商品,只需付款90(1-30%)元 | |||
| 方案二 | 若所購商品達到或超過100件(不同商品可累計),則按標價的20%返利. | ||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com