| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由矩形的性質(zhì)得出CD=AB=5,AB∥CD,BC=AD=3,∠D=90°,由平行線(xiàn)的性質(zhì)得出∠BAM=∠AMD,再由角平分線(xiàn)證出∠BAM=∠AMB,得出MB=AB=5,由勾股定理求出CM,即可得出DM的長(zhǎng).
解答 解:∵四邊形ABCD是矩形,![]()
∴CD=AB=5,AB∥CD,BC=AD=3,∠D=90°,
∴∠BAM=∠AMD,
∵AM平分∠DMB,
∴∠AMD=∠AMB,
∴∠BAM=∠AMB,
∴BM=AB=5,
∴CM=$\sqrt{B{M}^{2}-B{C}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴DM=CD-CM=5-4=1,
故選A.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、等腰三角形的判定、平行線(xiàn)的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明MB=AB是解決問(wèn)題的關(guān)鍵
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-3,$\frac{3}{2}$) | B. | ($\frac{3}{2}$,-3) | C. | (3,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2a3b=a2•2ab | B. | (x+3)(x-3)=x2-9 | ||
| C. | 2x2+4x-3=2x(x+2)-3 | D. | ax+ay=a(x+y) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 50° | B. | 40° | C. | 30° | D. | 60° |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com