如圖,在正方形ABCD中,E是BC上的一點,連接AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.求證:
(1)CG=BH;
(2)FC2=BF•GF;
(3)
=
.![]()
(1)△ABH≌△BCG,∴CG=BH (2)△CFG∽△BFC,∴
=
,即FC2=BF•GF
(3)∵AB=BC,∴AB2=BG•BF(具體過程見解析)
解析試題分析:(1)∵BF⊥AE,CG∥AE,
∴CG⊥BF,
∵在正方形ABCD中,∠ABH+∠CBG=90°,∠CBG+∠BCG=90°,
∠BAH+∠ABH=90°,
∴∠BAH=∠CBG,∠ABH=∠BCG,
AB=BC,
∴△ABH≌△BCG,
∴CG=BH;
(2)∵∠BFC=∠CFG,∠BCF=∠CGF=90°,
∴△CFG∽△BFC,
∴
=
,
即FC2=BF•GF;
(3)由(2)可知,BC2=BG•BF,
∵AB=BC,
∴AB2=BG•BF,
∴
=
=
,
即
=
.![]()
考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì).
點評:本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì).關(guān)鍵是由垂足得出互余關(guān)系求角相等,由邊相等證明三角形全等,由角相等證明相似三角形,利用性質(zhì)解題.
科目:初中數(shù)學 來源: 題型:
| 6 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com