(2011•江漢區(qū))在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸的兩個交點(diǎn)分別為A(﹣3,0)、B(1,
0),過頂點(diǎn)C作CH⊥x軸于點(diǎn)H.
(1)直接填寫:a= ,b= ,頂點(diǎn)C的坐標(biāo)為 ;
(2
)在y軸上是否存在點(diǎn)D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)若點(diǎn)P為x軸上方的拋物線上一動點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQ⊥AC于點(diǎn)Q,當(dāng)△PCQ與△ACH相似時,求點(diǎn)P的坐標(biāo).![]()
解:(1)a=﹣1,b=﹣2,頂點(diǎn)C的坐標(biāo)為(﹣1,4);
(2)假設(shè)在y軸上存在滿足條件的點(diǎn)D,過點(diǎn)C作CE⊥y軸于點(diǎn)E.
由∠CDA=90°得,∠1+∠2=90°.又∠2+∠3=90°,
∴∠3=∠1.又∵∠CED=∠DOA=90°,
∴△CED∽△DOA,∴
.
設(shè)D(0,c),則
.變形得c2﹣4c+3=0,解之得c1=3,c2=1.
綜合上述:在y軸上存在點(diǎn)D(0,3)或(0,1),
使△ACD是以AC為斜邊的直角三角形.![]()
(3)①若點(diǎn)P在對稱軸右側(cè)(如圖①),
只能是△PCQ∽△CAH,得∠QCP=∠CAH.
延長CP交x軸于M,∴AM=CM,∴AM2=CM2.
設(shè)M(m,0),則(m+3)2=42+(m+1)2,∴m=2,即M(2,0).
設(shè)直線CM的解析式為y=k1x+b1,
則
,解之得
,
.
∴直線CM的解析式
.
聯(lián)立
,解之得
或
(舍去).
∴
.
②若點(diǎn)P在對稱軸左側(cè)(如圖②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.
過A作CA的垂線交PC于點(diǎn)F,作FN⊥x軸于點(diǎn)N.
由△CFA∽△CAH得
,
由△FNA∽△AHC得
.
∴AN=2,F(xiàn)N=1,點(diǎn)F坐標(biāo)為(﹣5,1).
設(shè)直線CF的解析式為y=k2x+b2,則
,
解之得
.
∴直線CF的解析式
.
聯(lián)立
,解之得
或
(舍去).
∴
.
∴滿足條件的點(diǎn)P坐標(biāo)為
或
.![]()
解析
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題
(2011•江漢區(qū))如圖,BD是⊙O的直徑,A、C是⊙O上的兩點(diǎn),且AB=AC,AD與BC的延長線交于點(diǎn)E.
(1)求證:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的長.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com