分析 根據(jù)矩形的性質(zhì)得出∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,求出OB=OC,OB=OA,根據(jù)矩形性質(zhì)和已知求出∠BAE=∠DAE=45°,求出∠OBC=∠OCB=30°,求出△AOB是等邊三角形,推出AB=OB=BE,求出∠OEB=75°,最后減去∠AEB的度數(shù),即可求出答案.
解答
解:∵四邊形ABCD是矩形,
∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,
∴OB=OC,OB=OA,
∴∠OCB=∠OBC,
∵AB=BE,∠ABE=90°,
∴∠BAE=∠AEB=45°,
∵∠1=15°,
∴∠OCB=∠AEB-∠EAC=45°-15°=30°,
∴∠OBC=∠OCB=30°,
∴∠AOB=30°+30°=60°,
∵OA=OB,
∴△AOB是等邊三角形,
∴AB=OB,
∵∠BAE=∠AEB=45°,
∴AB=BE,
∴OB=BE,
∴∠OEB=∠EOB,
∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,
∴∠OEB=75°,
∵∠AEB=45°,
∴∠2=∠OEB-∠AEB=30°,
故答案為:30°.
點評 本題考查了矩形的性質(zhì),等邊三角形的性質(zhì),等腰三角形的性質(zhì)的綜合應(yīng)用,能求出∠OEB和∠AEB的度數(shù)是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | |-3|與-$\frac{1}{3}$ | B. | |-3|與-(-3) | C. | |-3|與-|-3| | D. | |-3|與$\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 都擴大到原來的3倍 | B. | 都縮小為原來的3倍 | ||
| C. | 都保持原來的數(shù)值都不變 | D. | 有的變大,有的縮小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | ±$\frac{1}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com