如圖。矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)0,過點(diǎn)O作OE⊥AC交AB于E,若BC=4,△AOE的面積為5,則sin∠BOE的值為 .
![]()
考點(diǎn):線段垂直平分線的性質(zhì);勾股定理;矩形的性質(zhì)。解直角三角形
分析:本題利用三角形的面積計(jì)算此題考查了矩形的性質(zhì)、垂直平分線的性質(zhì)以及勾股定理及解直角三角形.注意數(shù)形結(jié)合思想的應(yīng)用,此題綜合性較強(qiáng),難度較大,
解答:由△AOE的面積為5,找此三角形的高,作OH⊥AE于E,得OH∥BC,AH=BH,由三角形的中位線∵BC=4 ∴OH=2,從而AE=5,連接CE,
由AO=OC, OE⊥AC得EO是AC的垂直平分線,∴AE=CE,在直角三角形EBC中,BC=4,AE=5, 勾股定理得EB=3,AB=8,在直角三角形ABC中,勾股定理得AC=![]()
,BO=
AC=
,作EM⊥BO于M,在直角三角形EBM中,EM=BEsin∠ABD=3×![]()
=
,BM= BEcos∠ABD=3×
=
,從而OM=
,在直角三角形E0M中,勾股定理得OE=
,sin∠BOE=![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com