方程2x
2-6x-5=0兩根為α,β,則α
2+β
2=
,(α-β)
2=
.
考點(diǎn):根與系數(shù)的關(guān)系
專題:計(jì)算題
分析:先根據(jù)根與系數(shù)的關(guān)系得到α+β=3,αβ=-
,在利用完全平方公式變形得到α
2+β
2=(α+β)
2-2αβ;(α-β)
2=(α+β)
2-4αβ,然后利用整體代入的方法分別計(jì)算即可.
解答:解:根據(jù)題意得α+β=3,αβ=-
,
所以α
2+β
2=(α+β)
2-2αβ=3
2-2×(-
)=14;
(α-β)
2=(α+β)
2-4αβ=3
2-4×(-
)=19.
故答案為14,19.
點(diǎn)評(píng):本題考查了根與系數(shù)的關(guān)系:若x
1,x
2是一元二次方程ax
2+bx+c=0(a≠0)的兩根時(shí),x
1+x
2=
-,x
1x
2=
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:
題型:
計(jì)算
(1)解不等式組:
(2)解方程:
-1=
(3)解方程:2x
2+4x-3=0
(4)解方程:-
t
2+
t=
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“鳳凰”方程,已知關(guān)于x的方程ax2+bx+a-3=0(a>0)是“鳳凰”方程,且兩個(gè)實(shí)數(shù)根都是整數(shù),求整數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
已知:二次函數(shù)y=
x
2+bx+c,其圖象對(duì)稱軸為直線x=1,且經(jīng)過(guò)點(diǎn)(2,-
);
(1)求此二次函數(shù)的解析式;
(2)設(shè)該圖象與x軸交于B,C兩點(diǎn)(B點(diǎn)在C點(diǎn)的左側(cè)),請(qǐng)?jiān)诖硕魏瘮?shù)x軸下方的圖象上確定一點(diǎn)E,使△EBC得面積最大,并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
已知(a+
)
2-2(a+
)-3=0,且a>0,b>0.求證:
=
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠蹋?br />(1)4(x-5)2=16
(2)x2-12x-28=0
(3)x2-6x+9=0
(4)3x(x+2)=5(x+2)
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:

兩個(gè)正方形彼此相鄰,且大正方形ABCD的A、D兩點(diǎn)在半圓O上,小正方形BEFG頂點(diǎn)F在半圓O上;B、E兩點(diǎn)在半圓O的直徑上,點(diǎn)G在大正方形邊AB上,若小正方形的邊長(zhǎng)為4cm,求該圓的半徑.
查看答案和解析>>