解下列關(guān)于x的方程:
(1)(m-1)x2+(2m-1)x+m-3=0;
(2)x2-|x|-1=0;
(3)|x2+4x-5|=6-2x.
解:(1)當(dāng)m=1時(shí),原方程為:x-2=0,
∴x=2.
當(dāng)m≠1時(shí),判別式△=(2m-1)
2-4(m-1)(m-3)=12m-11,
∴當(dāng)m≠1且m>

時(shí),x=

,
當(dāng)m=

時(shí),△=0,x=

x
1=x
2=5,
當(dāng)m<

時(shí),△<0,方程沒(méi)有實(shí)數(shù)根.
(2)當(dāng)x≥0時(shí),原方程為:x
2-x-1=0
解方程得:x=

,
∵

<0,∴x=

;
當(dāng)x<0時(shí),原方程為:x
2+x-1=0,
解方程得:x=

,
∵

>0,∴x=

,
故原方程的根為x
1=

,x
2=-

.
(3)當(dāng)x
2+4x-5≥0時(shí),原方程為x
2+4x-5=6-2x,
整理得:x
2+6x-11=0,
解方程得:x=

=-3±2

,
當(dāng)x
2+4x-5<0時(shí),原方程為-x
2-4x+5=6-2x,
整理得:x
2+2x+1=0,
解方程得x
1=x
2=-1,
故原方程的解為:x
1=x
2=-1,x
3=-3+2

,x
4=-3-2

.
分析:(1)若m=1,方程是一元一次,解此一元一次方程;若m≠1,在判別式大于或等于零的情況下,分別求出方程的根,判別式小于零時(shí),方程沒(méi)有實(shí)數(shù)根.
(2)由于X帶有絕對(duì)值符合,必須按X≥0和X<0兩種情況解方程,對(duì)不合題意的根要舍去.
(3)方程的左邊帶有絕對(duì)值符合,所以按x
2+4x-5=6-2x和-x
2-4x+=6-2x解方程.
點(diǎn)評(píng):(1)由于方程中含有字母系數(shù),所以在討論字母系數(shù)的范圍后,再在不同的范圍內(nèi)求出方程的根;
(2)(3)中都帶有絕對(duì)值符號(hào),必須分兩種情況解方程,對(duì)不符合題意的根要舍去.