欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

P為四邊形ABCD的CD邊上一動點,當(dāng)四邊形ABCD滿足條件(    )時,△PAB的面積始終不變。(注:只需填上你認(rèn)為正確的一個條件即可)
AB∥CD(答案不唯一)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點.(尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.試說明點P是四邊形ABCD的準(zhǔn)等距點.
(4)試研究四邊形的準(zhǔn)等距點個數(shù)的情況.(說出相應(yīng)四邊形的特征及此時準(zhǔn)等距點的個數(shù),不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD的對角線CA平分∠BCD且AD=AB,AE⊥CB于E,點O為四邊形ABCD的外接圓的圓心,下列結(jié)論:(1)OA⊥DB;(2)CD+CB=2CE;(3)∠CBA-∠DAC=∠ACB;(4)若∠DAB=90°,則CD+CB=
3
CA.其中正確的結(jié)論是( 。
A、(1)(3)(4)
B、(1)(2)(4)
C、(2)(3)(4)
D、(1)(2)(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙0為四邊形ABCD的外接圓,AC為⊙0的直徑,CD∥AB,點E、F分別在BC和AD上,且EF經(jīng)過圓心0.
求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準(zhǔn)等距點.
(4)試研究四邊形的準(zhǔn)等距點個數(shù)的情況.(說出相應(yīng)四邊形的特征及此時準(zhǔn)等距點的個數(shù),不必證明)
①當(dāng)四邊形的對角線互相垂直且任何一條對角線不平分另一條對角線或者對角線互相平分且不垂直時,準(zhǔn)等距點的個數(shù)為
0
0
個;
②當(dāng)四邊形的對角線既不垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準(zhǔn)等距點的個數(shù)為
1
1
個;
③當(dāng)四邊形的對角線既不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準(zhǔn)等距點的個數(shù)為
2
2
個;
④當(dāng)四邊形的對角線互相垂直且至少有一條對角線平分另一條對角線時,準(zhǔn)等距點有
無數(shù)
無數(shù)
個(注意點P不能畫在對角線的中點上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準(zhǔn)等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準(zhǔn)等距點.
(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點.
(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(尺規(guī)作圖,保留作圖痕跡不要求寫作法).

查看答案和解析>>

同步練習(xí)冊答案