【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(
,1)在反比例函數(shù)y=
的圖像上.
(1)求反比例函數(shù)y=
的表達(dá)式;
(2)在x軸上是否存在一點(diǎn)P,使得SΔAOP=
SΔAOB,若存在求點(diǎn)P的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
(3)若將ΔBOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到ΔBDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說(shuō)明理由.
![]()
【答案】(1)y=
;(2)P(-2
,0)或(2
,0);(3)E(-
,-1),點(diǎn)E在反比例函數(shù)y=
的圖像上.
【解析】
(1)將點(diǎn)A(
,1)代入y=
,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;
(2)先由射影定理求出BC=3,那么AB=4,計(jì)算求出S△AOB,進(jìn)而求出S△AOP.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(-
,-1),即可求解.
(1)∵點(diǎn)A(
,1)在反比例函數(shù)y=
的圖像上,
∴k=
×1=
,
∴y=
;
(2)∵A(
,1),
∴OC=
,AC=1,
由△OAC∽△BOC得OC2=ACBC可得BC=3,
∴BA=4,
∴SΔAOB=
×
×4=2
,
∵SΔAOP=
SΔAOB
∴SΔAOP=
,
設(shè)P(m,0)
∴
×
×1=
,
∴
=2
,
∴m=-2
或2
,
∴P(-2
,0)或(2
,0) ;
(3)E(-
,-1),點(diǎn)E在反比例函數(shù)y=
的圖像上,
點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:
∵OA⊥OB,OA=2,OB=2
,AB=4,
∴sin∠ABO=
,
∴∠ABO=30°,
∵將△BOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDE,
∴△BOA≌△BDE,∠OBD=60°,
∴BO=BD=2
,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,
而BD-OC=
,BC-DE=1,
∴E(-
,-1),
∵-
×(-1)=
,
∴點(diǎn)E在該反比例函數(shù)的圖象上.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDE,DE交AC于點(diǎn)F,作EG⊥AC交AC于點(diǎn)G,交BC于點(diǎn)H.
(1)求證:△AEF≌△EDH.
(2)若AB=3,DH=2DF,求BC的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù)
(k>0)在第一象限內(nèi)過(guò)點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)F為BC的中點(diǎn),且S△AOF=12
時(shí),OA的長(zhǎng)為____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫圖:
(1)將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是AB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)P分別作AC,BD的垂線,分別交AC,BD于點(diǎn)E,F(xiàn),交AD,BC于點(diǎn)M,N.下列結(jié)論:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當(dāng)△PMN∽△AMP時(shí),點(diǎn)P是AB的中點(diǎn).
其中正確的結(jié)論有
![]()
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小紅作出了邊長(zhǎng)為1的第1個(gè)等邊
,算出了等邊
的面積,然后分別取
三邊的中點(diǎn)
、
、
,作出了第2個(gè)等邊
,算出了等邊
的面積,用同樣的方法,作出了第3個(gè)等邊
,算出了等邊
的面積……,由此可得,第
個(gè)等邊
的面積是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線
的對(duì)稱軸為直線
,與
軸一個(gè)交點(diǎn)的坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
;
;
方程
的兩個(gè)根是
,
;④當(dāng)
時(shí),
的取值范圍是
.其中結(jié)論正確的是_____________(填寫正確結(jié)論的標(biāo)號(hào))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】書法是我國(guó)的文化瑰寶,研習(xí)書法能培養(yǎng)高雅的品格.某校為加強(qiáng)書法教學(xué),了解學(xué)生現(xiàn)有的書寫能力,隨機(jī)抽取了部分學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí),分別用A,B,C,D表示,并將測(cè)試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.
![]()
請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答以下問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 人,扇形統(tǒng)計(jì)圖中A所對(duì)應(yīng)扇形圓心角的度數(shù)是 .
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該學(xué)校共有2800人,等級(jí)達(dá)到優(yōu)秀的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=
(x>0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com