| A. | $\frac{3\sqrt{3}}{4}$R2 | B. | $\frac{3\sqrt{3}}{2}$R2 | C. | 6R2 | D. | 1.5R2 |
分析 設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積.
解答 解:設(shè)O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,![]()
∠AOB=60°,OA=OB=R,
則△OAB是正三角形,
∵OC=OA•sin∠A=$\frac{\sqrt{3}}{2}$R,
∴S△OAB=$\frac{1}{2}$AB•OC=$\frac{\sqrt{3}}{4}$R2,
∴正六邊形的面積為6×$\frac{\sqrt{3}}{4}$R2=$\frac{3\sqrt{3}}{2}$R2,
故選B.
點(diǎn)評(píng) 本題考查的正多邊形和圓,理解正六邊形被半徑分成六個(gè)全等的等邊三角形是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | Ll | B. | L2 | C. | L3 | D. | L4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | m≥-$\frac{5}{4}$ | B. | m≤-$\frac{5}{4}$ | C. | m<-$\frac{5}{4}$ | D. | m>-$\frac{5}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{a^2}$ | C. | $\sqrt{a}$ | D. | $\sqrt{\frac{1}{3}}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com