欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2$\sqrt{3}$,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為(2$\sqrt{3}$,2);
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證:$\frac{DE}{DB}$=$\frac{\sqrt{3}}{3}$;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

分析 (1)求出AB、BC的長(zhǎng)即可解決問(wèn)題;
(2)存在.連接BE,取BE的中點(diǎn)K,連接DK、KC.首先證明B、D、E、C四點(diǎn)共圓,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO=$\frac{AO}{OC}$=$\frac{\sqrt{3}}{3}$,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,觀察圖象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等邊三角形,推出DC=BC=2,由此即可解決問(wèn)題;
(3)①由(2)可知,B、D、E、C四點(diǎn)共圓,推出∠DBC=∠DCE=30°,由此即可解決問(wèn)題;
②作DH⊥AB于H.想辦法用x表示BD、DE的長(zhǎng),構(gòu)建二次函數(shù)即可解決問(wèn)題;

解答 解:(1)∵四邊形AOCB是矩形,
∴BC=OA=2,OC=AB=2$\sqrt{3}$,∠BCO=∠BAO=90°,
∴B(2$\sqrt{3}$,2).
故答案為(2$\sqrt{3}$,2).

(2)存在.理由如下:
連接BE,取BE的中點(diǎn)K,連接DK、KC.

∵∠BDE=∠BCE=90°,
∴KD=KB=KE=KC,
∴B、D、E、C四點(diǎn)共圓,
∴∠DBE=∠DCE,∠EDC=∠EBC,
∵tan∠ACO=$\frac{AO}{OC}$=$\frac{\sqrt{3}}{3}$,
∴∠ACO=30°,∠ACB=60°
①如圖1中,當(dāng)E在線段CO上時(shí),△DEC是等腰三角形,觀察圖象可知,只有ED=EC,
∴∠DBE=∠DCE=∠EDC=∠EBC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等邊三角形,
∴DC=BC=2,
在Rt△AOC中,∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC-CD=4-2=2.
∴當(dāng)AD=2時(shí),△DEC是等腰三角形.
②如圖2中,當(dāng)E在OC的延長(zhǎng)線上時(shí),△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2$\sqrt{3}$,
綜上所述,滿(mǎn)足條件的AD的值為2或2$\sqrt{3}$.

(3)①由(2)可知,B、D、E、C四點(diǎn)共圓,
∴∠DBE=∠DCO=30°,
∴tan∠DBE=$\frac{DE}{DB}$,
∴$\frac{DE}{DB}$=$\frac{\sqrt{3}}{3}$.

②如圖2中,作DH⊥AB于H.

在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
∴DH=$\frac{1}{2}$AD=$\frac{1}{2}$x,AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=$\frac{\sqrt{3}}{2}$x,
∴BH=2$\sqrt{3}$-$\frac{\sqrt{3}}{2}$x,
在Rt△BDH中,BD=$\sqrt{B{H}^{2}+D{H}^{2}}$=$\sqrt{(\frac{1}{2}x)^{2}+(2\sqrt{3}-\frac{\sqrt{3}}{2}x)^{2}}$,
∴DE=$\frac{\sqrt{3}}{3}$BD=$\frac{\sqrt{3}}{3}$•$\sqrt{(\frac{1}{2}x)^{2}+(2\sqrt{3}-\frac{\sqrt{3}}{2}x)^{2}}$,
∴矩形BDEF的面積為y=$\frac{\sqrt{3}}{3}$[$\sqrt{(\frac{1}{2}x)^{2}+(2\sqrt{3}-\frac{\sqrt{3}}{2}x)^{2}}$]2=$\frac{\sqrt{3}}{3}$(x2-6x+12),
即y=$\frac{\sqrt{3}}{3}$x2-2$\sqrt{3}$x+4$\sqrt{3}$,
∴y=$\frac{\sqrt{3}}{3}$(x-3)2+$\sqrt{3}$,
∵$\frac{\sqrt{3}}{3}$>0,
∴x=3時(shí),y有最小值$\sqrt{3}$.

點(diǎn)評(píng) 本題考查相似形綜合題、四點(diǎn)共圓、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、勾股定理、二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加輔助線,證明B、D、E、C四點(diǎn)共圓,學(xué)會(huì)構(gòu)建二次函數(shù)解決問(wèn)題,屬于中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.學(xué)校準(zhǔn)備租用一批汽車(chē),現(xiàn)有甲、乙兩種大客車(chē),甲種客車(chē)每輛載客量45人,乙種客車(chē)每輛載客量30人.已知1輛甲種客車(chē)和3輛乙種客車(chē)共需租金1240元,3輛甲種客車(chē)和2輛乙種客車(chē)共需租金1760元.
(1)求1輛甲種客車(chē)和1輛乙種客車(chē)的租金分別是多少元?
(2)學(xué)校計(jì)劃租用甲、乙兩種客車(chē)共8輛,送330名師生集體外出活動(dòng),最節(jié)省的租車(chē)費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某商店第一次用500元購(gòu)進(jìn)鋼筆若干支,第二次又用500元購(gòu)進(jìn)該款鋼筆,但這次每支的進(jìn)價(jià)是第一次進(jìn)價(jià)的$\frac{5}{4}$倍,購(gòu)進(jìn)數(shù)量比第一次少了25支.
(1)求第一次每支鋼筆的進(jìn)價(jià)是多少元?
(2)若要求這兩次購(gòu)進(jìn)的鋼筆按同一價(jià)格全部銷(xiāo)售完畢后獲利不低于350元,問(wèn)每支售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.閱讀下列材料:
為了了解某市初中生的視力情況,隨機(jī)抽取了3000名學(xué)生進(jìn)行檢測(cè),收集數(shù)據(jù)后,繪制了以下三幅統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:
調(diào)查人數(shù)視力不良視力不良率(精確到0.01)
男生140075054%
女生1600 mn

根據(jù)統(tǒng)計(jì)圖表回答下列問(wèn)題:
(1 )統(tǒng)計(jì)表中m=1050,n=66%;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并通過(guò)計(jì)算估計(jì)該市80000名初中生的視力不良情況的人數(shù);
(3)通過(guò)統(tǒng)計(jì)圖表中的信息,寫(xiě)出一條關(guān)于視力不良的正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某賓館擁有客房90間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房?jī)r(jià)x(元)(180≤x≤300)滿(mǎn)足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如下表:
x(元)200240270300
y(間)90705540
(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每日空置的客房,賓館每日需支出60元,當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大值.(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列運(yùn)算錯(cuò)誤的是( 。
A.($\sqrt{3}$-1)0=1B.(-3)2÷$\frac{9}{4}$=$\frac{1}{4}$C.5x2-6x2=-x2D.(2m32÷(2m)2=m4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,在△ABC中,點(diǎn)O是△ABC的內(nèi)心,連接OB,OC,過(guò)點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F(xiàn).已知△ABC的周長(zhǎng)為8,BC=x,△AEF的周長(zhǎng)為y,則表示y與x的函數(shù)圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在平面直角坐標(biāo)系xOy中,△AOB可以看作是△OCD經(jīng)過(guò)若干次圖形的變化(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn))得到的,寫(xiě)出一種由△OCD得到△AOB的過(guò)程:△OCD繞C點(diǎn)順時(shí)針旋轉(zhuǎn)90°,并向左平移2個(gè)單位得到△AOB.

查看答案和解析>>

同步練習(xí)冊(cè)答案