【題目】如圖,兩個(gè)轉(zhuǎn)盤中指針落在每個(gè)數(shù)字上的機(jī)會(huì)相等,現(xiàn)同時(shí)轉(zhuǎn)動(dòng)
、
兩個(gè)轉(zhuǎn)盤,停止后,指針各指向一個(gè)數(shù)字.小力和小明利用這兩個(gè)轉(zhuǎn)盤做游戲,若兩數(shù)之積為非負(fù)數(shù)則小力勝;否則,小明勝.
![]()
(1)畫樹狀圖或列表求出各人獲勝的概率。
(2)這個(gè)游戲公平嗎?說(shuō)說(shuō)你的理由
【答案】(1)小力獲勝的概率為
,小明獲勝的概率
;(2)不公平,理由見(jiàn)解析
【解析】
(1)根據(jù)題意列出表格,由表格可求出所有等可能結(jié)果以及小力獲勝和小明獲勝的情況,由此可求得兩人獲勝的概率;
(2)比較兩人獲勝的概率,即可知游戲是否公平.
解:(1)列表得:
轉(zhuǎn)盤 兩個(gè)數(shù)字之積 轉(zhuǎn)盤 |
| 0 | 2 | 1 |
1 |
| 0 | 2 | 1 |
| 2 | 0 |
|
|
| 1 | 0 |
|
|
∵由兩個(gè)轉(zhuǎn)盤各轉(zhuǎn)出一數(shù)字作積的所有可能情況有12種,每種情況出現(xiàn)的可能性相同,其中兩個(gè)數(shù)字之積為非負(fù)數(shù)有7個(gè),負(fù)數(shù)有5個(gè),
∴
,
.
(2)![]()
![]()
![]()
.
∴這個(gè)游戲?qū)﹄p方不公平.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點(diǎn),連接CB,過(guò)C作CD⊥AB于點(diǎn)D,過(guò)點(diǎn)C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:CE是⊙O的切線.
(2)如圖2,點(diǎn)F在⊙O上,且滿足∠FCE=2∠ABC,連接AF井延長(zhǎng)交EC的延長(zhǎng)線于點(diǎn)G.
①試探究線段CF與CD之間滿足的數(shù)量關(guān)系;
②若CD=4,BD=2,求線段FG的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在正方形網(wǎng)格中,小正方形的邊長(zhǎng)均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線
與x軸、y軸分別交于點(diǎn)A、B,拋物線
經(jīng)過(guò)點(diǎn)A,將點(diǎn)B向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn)C,若拋物線與線段BC恰有一個(gè)公共點(diǎn),則
的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
與
軸交于
,
兩點(diǎn)(點(diǎn)
在點(diǎn)
的左側(cè)),與
軸交于點(diǎn)
,對(duì)稱軸與
軸交于點(diǎn)
,點(diǎn)
在拋物線上.
![]()
(1)求直線
的解析式.
(2)點(diǎn)
為直線
下方拋物線上的一點(diǎn),連接
,
.當(dāng)
的面積最大時(shí),連接
,
,點(diǎn)
是線段
的中點(diǎn),點(diǎn)
是線段
上的一點(diǎn),點(diǎn)
是線段
上的一點(diǎn),求
的最小值.
(3)點(diǎn)
是線段
的中點(diǎn),將拋物線
與
軸正方向平移得到新拋物線
,
經(jīng)過(guò)點(diǎn)
,
的頂點(diǎn)為點(diǎn)
,在新拋物線
的對(duì)稱軸上,是否存在點(diǎn)
,使得
為等腰三角形?若存在,直接寫出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形
中,
.將
向內(nèi)翻折,點(diǎn)
落在
上,記為
,折痕為
.若將
沿
向內(nèi)翻折,點(diǎn)
恰好 落在
上,記為
,則
的長(zhǎng)為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)
的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量
的取值范圍是全體實(shí)數(shù),
與
的幾組對(duì)應(yīng)值列表如下:其中,
.
| …… |
|
|
|
| 0 | 1 | 2 |
| 3 | …… |
| …… | 3 |
|
|
| 0 |
| 0 |
| 3 | …… |
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),已畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì): ;
(4)觀察函數(shù)圖象發(fā)現(xiàn):若關(guān)于
的方程
有4個(gè)實(shí)數(shù)根,則
的取值范圍是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線PC與⊙C的一個(gè)交點(diǎn),滿足r≤PP′≤2r,則稱P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.
(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(3,4),N(
,0),T(1,
)關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)D的坐標(biāo)為(2,0),DE,DF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;
(2)保持(1)中D,E,F三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動(dòng),⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請(qǐng)從下面兩個(gè)問(wèn)題中任選一個(gè)作答.
問(wèn)題1:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動(dòng)所形成的路徑長(zhǎng)為πr,則r的最小值為__________.
問(wèn)題2:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為_________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com