如圖,四邊形ABCD的對角線AC,BD交于點O,EF過點O,若OA=OC,OB=OD,則圖中全等的三角形有________對.
![]()
6
【解析】
試題分析:先根據(jù)平行四邊形的性質(zhì)及已知條件得到圖中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OEA≌△OFC,△OED≌△OFB,△OAB≌△OCD共6對.再分別進行證明.
①△ADC≌△CBA
∵ABCD為平行四邊形
∴AB=CD,∠ABC=∠ADC,AD=BC
∴△ADC≌△CBA;
②△ABD≌△CDB
∵ABCD為平行四邊形
∴AB=CD,∠BAD=∠BCD,AD=BC
∴△ABD≌△CDB;
③△OAD≌△OCB
∵對角線AC與BD的交于O
∴OA=OC,OD=OB,∠AOD=∠BOC
∴△OAD≌△OCB;
④△OEA≌△OFC
∵對角線AC與BD的交于O
∴OA=OC,∠AOE=∠COF,∠AOE=∠COF
∴△OEA≌△OFC;
⑤△OED≌△OFB
∵對角線AC與BD的交于O
∴OD=OB,∠EOD=∠FOB,OE=OF
∴△OED≌△OFB;
⑥△OAB≌△OCD
∵對角線AC與BD的交于O
∴OA=OC,∠AOB=∠DOC,OB=OD
∴△OAB≌△OCD.
考點:本題考查平行四邊形的性質(zhì)及全等三角形的判定條件
點評:判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com