
分析:△ABC為大⊙O的內(nèi)接正三角形,小⊙O為△ABC的內(nèi)切圓,與BC切于D,且OB=r,根據(jù)等邊三角形的性質(zhì)得到∠ABC=60°,根據(jù)內(nèi)圓的性質(zhì)以及內(nèi)心的性質(zhì)得到∠OBD=

∠ABC=30°,OD⊥BC,然后根據(jù)含30度的直角三角形三邊的關(guān)系即可得到OD=

OB=

r.
解答:如圖,

△ABC為大⊙O的內(nèi)接正三角形,小⊙O為△ABC的內(nèi)切圓,與BC切于D,且OB=r,
∵△ABC為正三角形,
∴∠ABC=60°,
∵小⊙O為△ABC的內(nèi)切圓,與BC切于D,
∴∠OBD=

∠ABC=30°,OD⊥BC,
在Rt△OBD中,∠ODB=90°,∠OBD=30°,OB=r,
∴OD=

OB=

r.
故答案為

r.
點(diǎn)評(píng):本題考查了三角形的內(nèi)切圓與內(nèi)心:與三角形三邊都相切的圓叫三角形的內(nèi)切圓,內(nèi)切圓的圓心叫三角形的內(nèi)心,三角形內(nèi)心到三角形三邊的距離相等.也考查了正三角形的性質(zhì)以及含30度的直角三角形三邊的關(guān)系.