【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(-1,t),B(3,t),與y
軸交于點(diǎn)C(0,-1).一次函數(shù)y=x+n的圖象經(jīng)過拋物線的頂點(diǎn)D.
![]()
(
)求拋物線的表達(dá)式.
(
)求一次函數(shù)
的表達(dá)式.
(
)將直線
繞其與
軸的交點(diǎn)
旋轉(zhuǎn),使當(dāng)
時,直線
總位于拋物線的下方,請結(jié)合函數(shù)圖象,求
的取值范圍.
【答案】(1)y=x2-2x-1;(2)一次函數(shù)y=x+n的表達(dá)式是y=x-3;(3)當(dāng)-5<m<1時,當(dāng)-1≤x≤1時,直線l總位于拋物線的下方.
【解析】試題分析:(1)根據(jù)A和B對稱,可求得對稱軸,則b的值即可求得,然后根據(jù)函數(shù)經(jīng)過點(diǎn)C(0,1).代入即可求得c的值,則拋物線解析式即可求得;
(2)首先求得拋物線的頂點(diǎn),代入一次函數(shù)解析式即可求得n的值,求得一次函數(shù)的解析式;
(3)首先求得拋物線上當(dāng)
和
時對應(yīng)點(diǎn)的坐標(biāo),然后求得直線
經(jīng)過這兩個點(diǎn)時對應(yīng)的
的值,據(jù)此即可求解.
試題解析:(1)二次函數(shù)的對稱軸是
則
解得:b=2,
∵拋物線與y軸交于點(diǎn)C(0,1).
∴c=1,
則二次函數(shù)的解析式是
;
(2)二次函數(shù)
的頂點(diǎn)坐標(biāo)是(1,2),
代入y=x+n得2=1+n,
解得:n=3,
則一次函數(shù)y=x+n的表達(dá)式是y=x3;
(3)如圖所示:
![]()
在
中,當(dāng)x=1時,y=2;
當(dāng)x=1時,y=2.
當(dāng)直線y=mx3經(jīng)過點(diǎn)(1,2)時,m3=2,解得:m=5;
當(dāng)直線y=mx3經(jīng)過點(diǎn)(1,2)時,m3=2,解得:m=1.
則當(dāng)5<m<1時,當(dāng)
時,直線l總位于拋物線的下方.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是( 。
![]()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)
的圖象與
軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
![]()
(1)求這個二次函數(shù)的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)Q是直線AC上方的拋物線上一動點(diǎn),過點(diǎn)Q作QE垂直于
軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點(diǎn)分別在反比例函數(shù)
與
(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時.
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)
和函數(shù)
的圖象之間的關(guān)系,小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),通過畫出兩個函數(shù)圖象后,再觀察研究.
下面是小東的探究過程,請補(bǔ)充完成:
(
)下表是
與
的幾組對應(yīng)值.
| … |
|
|
|
|
|
|
|
|
|
|
| … |
| … |
|
|
|
|
|
|
|
|
|
|
| … |
下表是
與
的幾組對應(yīng)值
| … |
|
|
|
|
|
|
|
|
|
|
| … |
| … |
|
|
|
|
|
|
|
|
|
|
| … |
請補(bǔ)全表格
__________.
(
)如下圖,在平面直角坐標(biāo)系
中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),請根據(jù)描出的點(diǎn),在同一坐標(biāo)系中畫出
和函數(shù)
的圖象.
![]()
(
)觀察這兩個函數(shù)的圖象,發(fā)現(xiàn)這兩個函數(shù)圖象是關(guān)于直線成軸對稱的,請畫出這條直線.
(
)已知
,借助函數(shù)圖象比較
,
,
的大。ㄓ“
”號連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)上海市市政府“綠色出行”的號召,減輕校門口道路擁堵的現(xiàn)狀,王強(qiáng)決定改父母開車接送為自己騎車上學(xué).已知他家離學(xué)校7.5千米,上下班高峰時段,駕車的平均速度比自行車平均速度快15千米/小時,騎自行車所用時間比駕車所用時間多
小時,求自行車的平均速度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實(shí)數(shù)根;④拋物線與x軸的另一個交點(diǎn)是(-1,0);⑤當(dāng)1<x<4時,有y2<y1,
其中正確的是( )
![]()
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形
的邊長為
是邊
的中點(diǎn),
是邊
上的一個動點(diǎn),將線段
繞著
逆時針旋轉(zhuǎn)
,得到
,連接
,則
的最小值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當(dāng)滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com