已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
![]()
考點:
二次函數(shù)綜合題.
分析:
(1)首先解一元二次方程,求出點A、點B的坐標,得到含有字母a的拋物線的交點式;然后分別用含字母a的代數(shù)式表示出△ABC與△ACD的面積,最后得出結論;
(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系數(shù)a,得出拋物線的解析式.
解答:
解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,
由于x1<x2,則有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).
拋物線的解析式為:y=a(x+5)(x﹣1)(a>0),
∴對稱軸為直線x=2,頂點D的坐標為(﹣2,﹣9a),
令x=0,得y=﹣5a,
∴C點的坐標為(0,﹣5a).
依題意畫出圖形,如右圖所示,則OA=5,OB=1,AB=6,OC=5a,
過點D作DE⊥y軸于點E,則DE=2,OE=9a,CE=OE﹣OC=4a.
S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC
=(DE+OA)•OE﹣DE•CE﹣OA•OC
=(2+5)•9a﹣×2×4a﹣×5×5a
=15a,
而S△ABC=AB•OC=×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1;
(2)如解答圖所示,
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
設對稱軸x=2與x軸交于點F,則AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD為直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化簡得:a2=,
∵a>0,
∴a=
,
∴拋物線的解析式為:y=
(x+5)(x﹣1)=
x2+
x﹣
.
![]()
點評:
本題考查了二次函數(shù)的圖象與性質、一元二次方程的解法、直角三角形與勾股定理、幾何圖形面積的計算等知識點,難度不是很大,但涉及的計算較多,需要仔細認真,避免出錯.注意第(1)問中求△ACD面積的方法.
科目:初中數(shù)學 來源: 題型:
如圖,已知二次函數(shù)y=ax
+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.
(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題
已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是( )
![]()
A.a>0 B.3是方程ax²+bx+c=0的一個根
C.a+b+c=0 D.當x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:
(A)圖像關于直線x=1對稱
(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4
(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根
(D)當x<1時,y隨x的增大而增大
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com