已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC與點D,AD的延長線交BC于點E,過D作⊙O的切線交BC于點F。下列結(jié)論:①CD2=CE·CB;②4EF2=ED·EA;③∠OCB=∠EAB;④DF=
CD.其中正確的有 (填序號)![]()
①、②、④
解析試題分析:先連接BD,利用相似三角形的判定以及切線的性質(zhì)定理得出DF=FB,進而分別得出△CDE∽△CBD以及△CDF∽△CBO,再根據(jù)相似三角形的性質(zhì)分別分析即可得出答案.:
解:①連接BD,
∵AB為直徑,
∴∠ADB=90°,
∴∠DBE+∠3=90°,
∵∠ABC=90°,
∴∠1+∠DBE=90°,
∴∠1=∠3,
又∵DO=BO,
∴∠1=∠2,
∴∠2=∠3,
∴∠CDB=∠CED,
∵∠DCB=∠ECD,
∴△CDE∽△CBD,
∴CD2=CE•CB,故①CD2=CE•CB正確;
②∵過D作⊙O的切線交BC于點F,
∴FD是⊙O的切線,
∵∠ABC=90°,
∴CB是⊙O的切線,
∴FB=DF,![]()
∴∠FDB=∠FBD,
∴∠1=∠FDE,
∴∠FDE=∠3,
∴DF=EF,
∴EF=FB,
∴EB=2EF,
∵在Rt△ABE中,BD⊥AE,
∴EB2=ED•EA,
∴4EF2=ED•EA,故②4EF2=ED•EA正確;
③∵AO=DO,
∴∠OAD=∠ADO,
假設③∠OCB=∠EAB成立,
則∠OCB=0.5∠COB,
∴∠OCB=30°,
而
,與tan30°=
矛盾,
故③∠OCB=∠EAB不成立,故此選項錯誤;
④∵∠CDF=∠CBO=90°,
∠DCF=∠OCB,
∴△CDF∽△CBO,
∴
,
∴
,
∵AB=BC,
∴DF=0.5CD;故④DF=0.5CD正確.
綜上正確的有①、②、④.
故答案為:①②④.
考點:圓的增合體
點評:此題主要考查了圓的切線性質(zhì)與判定、圓周角定理性質(zhì)及三角形相似的判定等知識,熟練根據(jù)相似三角形的性質(zhì)得出對應邊之間關(guān)系是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
| AC |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com