欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
(2006•常德)等腰梯形的上底、下底和腰長分別為4cm、10cm和6cm,則等腰梯形的下底角為    度.
【答案】分析:作圖,根據勾股定理可求得BE的長,從而可求得∠B的度數.
解答:解:如圖,過A點作梯形的高AE.
等腰梯形的上底AD=4,下底BC=10,AB=6
根據勾股定理可得BE=3,可得∠B=60°
則等腰梯形的下底角為60度.
點評:本題考查等腰梯形的性質以及勾股定理的運用.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年北京市中考數學模擬試卷(解析版) 題型:解答題

(2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數關系式.(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數學 來源:2009年山東省濟南市省實驗中學中考數學測試試卷(2)(解析版) 題型:解答題

(2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數關系式.(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數學 來源:2009年高中段自主招生科學素養(yǎng)模擬卷(數學部分)(解析版) 題型:解答題

(2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數關系式.(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數學 來源:2006年湖南省常德市中考數學試卷(解析版) 題型:解答題

(2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數關系式.(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數學 來源:2006年湖南省常德市中考數學試卷(解析版) 題型:解答題

(2006•常德)如圖,P是等邊三角形ABC內的一點,連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1)觀察并猜想AP與CQ之間的大小關系,并證明你的結論;
(2)若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案