分析 如圖連接CD、OD、OC,延長DO交AC于E,設(shè)半徑為R,先證明DE⊥AC,DE=$\frac{1}{2}$CB,在RT△OCE中,利用勾股定理即可解決問題.
解答 解:如圖連接CD、OD、OC,延長DO交AC于E,設(shè)半徑為R.
在RT△ABC中,∵∠ACB=90°,BC=8,AC=6,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵BD=AD=5,
∴CD=AD=5
,
∵DC=DA,
$\widehat{CD}$=$\widehat{AD}$,
∴DO⊥AC,EC=AE=3,
∴ED∥BC,∵BD=AD,
∴EC=EA,
∴DE=$\frac{1}{2}$BC=4,
在RT△COE中,∵∠OEC=90°,
∴CO2=OE2+CE2,
∴R2=(4-R)2+32,
∴R=$\frac{25}{8}$.
點評 本題考查點與圓的位置關(guān)系,三角形的中位線的性質(zhì),垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{5}{2}$ | B. | -$\frac{2}{5}$ | C. | $\frac{5}{2}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20° | B. | 30° | C. | 40° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com