【題目】已知關(guān)于x的一元二次方程x2﹣x+
m=0有兩個(gè)實(shí)數(shù)根.
(1)若m為正整數(shù),求此方程的根.
(2)設(shè)此方程的兩個(gè)實(shí)數(shù)根為a、b,若y=a(a﹣1)﹣2b2+2b+1,求y的取值范圍.
【答案】(1)x1=x2=
;(2)y≤
.
【解析】
(1)根據(jù)一元二次方程根的判別式即可計(jì)算解答;
(2)將方程的兩個(gè)實(shí)數(shù)根為a,b代入方程中,再代入y=a(a-1)﹣2b2+2b+1中化簡(jiǎn)計(jì)算即可.
解:(1)∵關(guān)于x的一元二次方程x2﹣x+
m=0有兩個(gè)實(shí)數(shù)根,
∴△=(﹣1)2﹣4×1×
m≥0,
解得:m≤1.
又∵m為正整數(shù),
∴m=1.
當(dāng)m=1時(shí),原方程為x2﹣x+
=0,即(x﹣
)2=0,
解得:x1=x2=
.
(2)∵此方程的兩個(gè)實(shí)數(shù)根為a,b,
∴a2﹣a=-
m,b2﹣b=-
m,
∴y=a(a-1)﹣2b2+2b+1=a2-a-2(b2-b)+1=
m+1.
又∵m≤1,
∴y≤
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、G分別是邊AD、BC的中點(diǎn),AF=
AB.
(1)求證:EF⊥AG;
(2)若點(diǎn)F、G分別在射線AB、BC上同時(shí)向右、向上運(yùn)動(dòng),點(diǎn)G運(yùn)動(dòng)速度是點(diǎn)F運(yùn)動(dòng)速度的2倍,EF⊥AG是否成立(只寫結(jié)果,不需說(shuō)明理由)?
(3)正方形ABCD的邊長(zhǎng)為4,P是正方形ABCD內(nèi)一點(diǎn),當(dāng)
,求△PAB周長(zhǎng)的最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
:y=
與
軸交于點(diǎn)B1,以OB1為邊作等邊三邊形A1OB1,過(guò)點(diǎn)A1作A1B2平行于
軸,交直線
于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過(guò)點(diǎn)A2作A2B3平行于
軸,交直線
于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,則點(diǎn)A2017的橫坐標(biāo)是( 。
![]()
A.
B.2
-1C.2
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒(méi)有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于﹣1.若我們規(guī)定一個(gè)新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個(gè)根為i).并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有運(yùn)算律和運(yùn)算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對(duì)任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( )
A.0B.1C.﹣1D.i
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義
為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是
的一次函數(shù)為正比例函數(shù),求m的值;
(2)已知拋物線y=(x+n)(x-2)與x軸交于點(diǎn)A、B,其中n>0,點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,且△OAC的面積為4,O為原點(diǎn),求圖象過(guò)A、C兩點(diǎn)的一次函數(shù)的特征數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)
的圖象上有一動(dòng)點(diǎn)
,連接
并延長(zhǎng)交圖象的另一支于點(diǎn)
,在第二象限內(nèi)有一點(diǎn)
,滿足
,當(dāng)點(diǎn)
運(yùn)動(dòng)時(shí),點(diǎn)
始終在函數(shù)
的圖象上運(yùn)動(dòng),
,則
______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
![]()
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過(guò)點(diǎn)A(1,2),直線y=3x﹣4
經(jīng)過(guò)點(diǎn)B(
,n),與y軸交點(diǎn)為C.
(1)求拋物線的解析式及n的值;
(2)將直線BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;
(3)如圖2將拋物線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點(diǎn)M、N,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com