已知關(guān)于x的方程x2+(m+2)x+2m﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)當(dāng)m為何值時(shí),方程的兩根互為相反數(shù)?并求出此時(shí)方程的解.
【考點(diǎn)】根的判別式;根與系數(shù)的關(guān)系.
【專(zhuān)題】計(jì)算題.
【分析】(1)先計(jì)算出△=(m+2)2﹣4(2m﹣1),變形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,則△>0,然后根據(jù)△的意義得到方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)利用根與系數(shù)的關(guān)系得到x1+x2=0,即m+2=0,解得m=﹣2,則原方程化為x2﹣5=0,然后利用直接開(kāi)平方法求解.
【解答】(1)證明:△=(m+2)2﹣4(2m﹣1)
=m2﹣4m+8
=(m﹣2)2+4,
∵(m﹣2)2≥0,
∴(m﹣2)2+4>0,
即△>0,
所以方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)根為x1,x2,由題意得:
x1+x2=0,即m+2=0,解得m=﹣2,
當(dāng)m=﹣2時(shí),方程兩根互為相反數(shù),
當(dāng)m=﹣2時(shí),原方程為x2﹣5=0,
解得:x1=﹣
,x2=
.
【點(diǎn)評(píng)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了解一元二次方程和根與系數(shù)的關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在邊長(zhǎng)為2的正方形ABCD中,G是AD延長(zhǎng)線上的一點(diǎn),且DG=AD,動(dòng)點(diǎn)M從A出發(fā),以每秒1個(gè)單位的速度沿著A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A、G重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒。連接BM并延長(zhǎng)交AG于N。
(1)是否存在點(diǎn)M,使△ABM為等腰三角形?若存在,分析點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若BN⊥H
N,NH交∠CDG的平
分線于H,求證:BN=NH;
(3)過(guò)點(diǎn)M分別作AB、AD的垂線,垂足分別為E、F,矩形AEMF與△ACG重疊部分的面積為S,求S的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,A、B分別為y=x2上兩點(diǎn),且線段AB⊥y軸,若AB=6,則直線AB的表達(dá)式為( )
![]()
A.y=3 B.y=6 C.y=9 D.y=36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
二次函數(shù)y=x2﹣6x+c的圖象的頂點(diǎn)與原點(diǎn)的距離為5,則c=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=x2﹣2mx+m2﹣1(m≠0)的圖象經(jīng)過(guò)點(diǎn)(1,0).
(1)求二次函數(shù)的解析式;
(2)該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C,D兩點(diǎn)的坐標(biāo);
(
3)x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)
,當(dāng)函數(shù)值y隨x的增大而減小時(shí),x的取值范圍是( )
A.x<1 B.x>1 C.x>﹣2 D.﹣2<x<4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的方程x2﹣(2k+1)x+4(k﹣
)=0,若等腰三角形ABC的一邊長(zhǎng)a=4,另一邊長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某土建工程共需動(dòng)用15臺(tái)挖運(yùn)機(jī)械,每臺(tái)機(jī)械每分鐘能挖土3m3或者運(yùn)土2m3.為了使挖土和運(yùn)土工作同時(shí)結(jié)束,安排了
臺(tái)機(jī)械運(yùn)土,這里
應(yīng)滿足的方程是( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com