【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=
.
其中正確的序號(hào)是 (把你認(rèn)為正確的都填上).
![]()
【答案】①②④
【解析】
∵四邊形ABCD是正方形,∴AB=AD。
∵△AEF是等邊三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說法正確。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。
如圖,連接AC,交EF于G點(diǎn),
![]()
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③說法錯(cuò)誤。
∵EF=2,∴CE=CF=
。
設(shè)正方形的邊長為a,在Rt△ADF中,
,解得
,
∴
。
∴
。∴④說法正確。
綜上所述,正確的序號(hào)是①②④。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,8個(gè)完全相同的小矩形拼成了一個(gè)大矩形,AB是其中一個(gè)小矩形的對角線,請?jiān)诖缶匦沃型瓿上铝挟媹D,要求:①僅用無刻度的直尺;②保留必要的畫圖痕跡.
(1)在圖1中畫出一個(gè)45°的角,使點(diǎn)A或者點(diǎn)B是這個(gè)角的頂點(diǎn),且AB為這個(gè)角的一邊.
(2)在圖2中畫出線段AB的垂直平分線.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜免賽跑”的故事同學(xué)們都非常熱悉,圖中的線段OD和折線OABC表示“龜兔賽跑時(shí)路程與時(shí)間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中_______(填“兔子”或“烏龜”)的路程與時(shí)間的關(guān)系,賽跑的全過程是___________米.
(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?
(3)烏龜用了多少分鐘追上了正在睡覺的兔子?
(4)兔子醒來假,以400米/分的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
.點(diǎn)
從點(diǎn)
出發(fā)沿
路徑向終點(diǎn)
運(yùn)動(dòng);點(diǎn)
從
點(diǎn)出發(fā)沿
路徑向終點(diǎn)
運(yùn)動(dòng).點(diǎn)
和
分別以1和3的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過
和
作
于
,
于
.則點(diǎn)
運(yùn)動(dòng)時(shí)間等于____________時(shí),
與
全等。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△DEF的三個(gè)頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)將△DEF向右平移5個(gè)單位長度,畫出平移后的△D1E1F1;
(2) 將△DEF向上平移5個(gè)單位長度,再向右平移4個(gè)單位長度,畫出平移后的△D2E2F2;
(3)求出三角形DEF的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長線上一點(diǎn),且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀并說明理由;
(2)已知a:b:c=3:4:5,求該一元二次方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB與CD相交于點(diǎn)O,OE、OF分別是∠BOD、∠AOD的平分線。
![]()
(1)∠DOE的補(bǔ)角是___;
(2)若∠BOD=62°,求∠AOE和∠DOF的度數(shù);
(3)判斷射線OE與OF之間有怎樣的位置關(guān)系?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( )
![]()
A.4B.8C.10D.12
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com