如圖,在直角坐標系中,半徑為1的⊙A圓心與原點O重合,直線l分別交x軸、y軸于點B、C,若點B的坐標為(6,0),tan∠ABC=
.
![]()
(1)若點P是⊙A上的動點,求P到直線BC的最小距離,并求此時點P的坐標;
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿著線路OB→BC→CO運動,回到點O停止運動,⊙A隨著點A的運動而移動.設點A運動的時間為t.
①求⊙A在整個運動過程中與坐標軸相切時t的取值;
②求⊙A在整個運動過程中所掃過的圖形的面積為 .
(1)
,最小距離為3.8;(2)①
1、
、
、
、
、23;②42+![]()
【解析】
試題分析:(1)利用點B的坐標為(6,0)且tan∠ABC=
,即可得出C點坐標,進而利用△OPH∽△CBO,求出P點坐標即可;
(2)①利用⊙A在整個運動過程中所掃過的面積=矩形DROC面積+矩形OYHB面積+矩形BGFC面積+△ABC面積+一個圓的面積-△LSK面積,求出即可;
②利用相似三角形的判定與性質(zhì)得出t的值即可,注意利用數(shù)形結(jié)合得出.
(1)∵點B的坐標為(6,0)且tan∠ABC=![]()
![]()
![]()
∴AC=8,
故C點坐標為:C(0,8),
∴BC=10,
過O作OG⊥BC于G,則OG與⊙A的交點即為所求點P.過P作PH⊥x軸于H,
![]()
∵PH⊥AB,
∴∠OHP=90°,
∵∠POH+∠COP=90°,∠POC+∠OCG=90°,
∴∠POH=∠OCG,
又∵∠COB=90°,
∴△OPH∽△CBO,
![]()
可得
,![]()
∴
;
(2)①如圖所示:⊙A與△OBC的三邊相切有6種不同的情況,
當⊙O2與BC相切于點N,則O2N⊥BC,
![]()
∵∠OBC=∠O2BN,∠O2NB=∠COB=90°,
∴△O2NB∽△COB,
![]()
解得![]()
則
,則t的值為
秒,
同理可得出:O3,O4,O5的位置,即可得出時間t的值,
故t=1、
、
、
、
、23;
②如圖2所示:當圓分別在O,B,C位置時,作出公切線DR,YH,F(xiàn)G,PW,切點分別為:D,R,H,G,F(xiàn),P,W
連接CD,CF,BG,過點K作KX⊥BC于點X,PW交AB于點U,
![]()
∵PU∥OB,
∴∠OBC=∠KUX,
∵∠KXU=∠COB=90°,
∴△COB∽△KXU,
![]()
∵PU∥BO,
∴△CPU∽△COB,
![]()
同理可得出:△LSK∽△COB,
![]()
解得:LS=4,
則∠CDR=∠CFG=∠BGF=∠BHY=∠AYH=90°,
故⊙A在整個運動過程中所掃過的面積
=矩形DROC面積+矩形OYHB面積+矩形BGFC面積+△ABC面積+一個圓的面積-△LSK面積,
![]()
=42+
.
考點:圓的綜合題
點評:圓的綜合題是初中數(shù)學的重點和難點,是中考的熱點,尤其在壓軸題中極為常見,要特別注意.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| PP′ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 6 |
| x |
| 3 |
| 2 |
| 6 |
| x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com