【題目】如圖,
平分
交
于
,交
于
,
.
(1)求證:
;
(2)
.
![]()
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1)證明△ABD≌△ACF即可得到結(jié)論;
(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根據(jù)三角形內(nèi)角和定理可得∠CED=∠BAD=90°,即BE⊥CF,結(jié)合BD平分∠ABC可證明BC=BF.
(1)∵∠BAC=90°,
∴∠CAF=90°,
∴∠BAC=∠CAF,
又∵AB=AC,AD=AF,
∴△ABD≌△ACF,
∴∠ABD=∠ACF;
(2)在△CDE和△BDA中
∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°
又∠ABD=∠ACF,∠CDE=∠BDA,
∴∠CED=∠BDA=90°,
∴∠CEB=∠FEB=90°,
∵BD平分∠ABC
∴∠CBE=∠FBE
又BE為公共邊,
∴△CEB≌△FEB,
∴BC=BF.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的頂點(diǎn)A、B分別在射線OM、ON上,當(dāng)點(diǎn)B在ON上運(yùn)動時,A隨之在OM上運(yùn)動,△ABC的形狀始終保持不變,在運(yùn)動的過程中,點(diǎn)C到點(diǎn)O的最小距離為____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一三角形紙片ABC,∠A=70°,點(diǎn)D是AC邊上一點(diǎn),沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩個紙片均為等腰三角形,則∠C的度數(shù)可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖所示,直線y1=-2x+3和直線y2=mx-1分別交y軸于點(diǎn)A,B,兩直線交于點(diǎn)C(1,n).
(1)求m,n的值;
(2)求ΔABC的面積;
(3)請根據(jù)圖象直接寫出:當(dāng)y1<y2時,自變量的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為3cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿
的方向運(yùn)動,到達(dá)點(diǎn)C時停止,設(shè)運(yùn)動時間為x(秒),
,則y關(guān)于x的函數(shù)的圖像大致為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B在直線
上運(yùn)動,當(dāng)線段AB最短時,點(diǎn)B的坐標(biāo)為( )
![]()
A. (0,0) B. (
,
) C. (
,
) D. (
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E是平行四邊形ABCD中DA邊的延長線上一點(diǎn),且AE=AD,連接EC分別交AB,BE于點(diǎn)F、G.
(1)求證:BF=AF;
(2)若BD=12cm,求DG的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是規(guī)格為
的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
![]()
(1)請在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
;
(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn)
,使點(diǎn)
與線段
組成一個以
為底的等腰三角形,且腰長是無理數(shù),畫出
,則點(diǎn)
的坐標(biāo)是 ,
的周長是 (結(jié)果保留根號);
(3)作出
關(guān)于
軸對稱的
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com