計(jì)算下列各題:
(1)(-4a5b3)2÷(8a2b3)
(2)(x+2)2-(x+3)(x-3)
(3)[(2x+1)(4x+2)-2]÷(8x)
(4)已知x+y=10,x•y=24,求x2+y2的值.
解:(1)(-4a5b3)2÷(8a2b3),
=16a10b6÷8a2b3,
=2a8b3;
(2)(x+2)2-(x+3)(x-3),
=x2+4x+4-x2+9,
=4x+13;
(3)[(2x+1)(4x+2)-2]÷(8x),
=(8x2+8x+2-2)÷8x,
=(8x2+8x)÷8x,
=x+1.
(4)當(dāng)x+y=10,x•y=24時(shí),
x2+y2=(x+y)2-2xy,
=102-2×24,
=100-48,
=52.
分析:(1)運(yùn)用積的乘方和單項(xiàng)式的除法直接進(jìn)行計(jì)算.
(2)運(yùn)用平方差公式和完全平方公式進(jìn)行計(jì)算,注意最后要合并同類項(xiàng).
(3)先算中括號(hào)里的多項(xiàng)式的乘法,再合并同類項(xiàng),最后計(jì)算多項(xiàng)式除以單項(xiàng)式.
(4)先將所求的代數(shù)式化為:x2+y2=(x+y)2-2xy,然后再將已知條件整體代入.
點(diǎn)評(píng):本題考查積的乘方的性質(zhì),單項(xiàng)式的除法,多項(xiàng)式的乘法,完全平方公式,平方差公式,熟練掌握各運(yùn)算性質(zhì)和法則是解題的關(guān)鍵,運(yùn)算時(shí)一定要認(rèn)真仔細(xì).