欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點(diǎn)Q從A出發(fā)沿A→B→C的方向以個單位每秒速度運(yùn)動,同時,點(diǎn)P從O出發(fā)沿OF方向以個單位每秒速度運(yùn)動,Q點(diǎn)到達(dá)終點(diǎn),點(diǎn)P停止運(yùn)動,運(yùn)動時間為t。求:
(1)求G點(diǎn)的坐標(biāo)。
(2)當(dāng)t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式;
解:(1)過C作CE⊥x軸于E;由于四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°;易證得△ABO≌△BCE,則AO=BE=2,OB=CE=1,
∴C(3,1)
∵A (0,2)
∴G()。
(2)由于G是正方形的對稱中心, ∴∠GDF=45°,
由于AB∥CD,得∠DFP=∠AEO,若△AEO與△DFP相似,則:
①當(dāng)∠PDF=45°時,P、G重合,此時P(),,故t=
②∵A (0,2) B (1,0) C(3,1)
∴D(2,3)
當(dāng)∠DPF=45°時,DP∥y軸,此時P(2,2),,故t=2;
所以當(dāng)t=2或t=時,△AEO與△DFP相似。
(3)①時,








。





過P作Ph⊥BC,PI⊥x軸
PI交BC為M
易證





練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(diǎn)(不含A、B點(diǎn)),F(xiàn)為BC邊的延長線上一點(diǎn),△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運(yùn)動,同時,點(diǎn)R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個單位每秒速度運(yùn)動,運(yùn)動時間為t.求:
(1)C的坐標(biāo)為
 

(2)當(dāng)t為何值時,△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點(diǎn)的四邊形是梯形時t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點(diǎn)Q從A出發(fā)沿A→B→C的方向以
5
個單位每秒速度運(yùn)動,同時,點(diǎn)P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個單位每秒速度運(yùn)動,Q點(diǎn)到達(dá)終點(diǎn),點(diǎn)P停止運(yùn)動,運(yùn)動時間為t.求:
(1)求G點(diǎn)的坐標(biāo).
(2)當(dāng)t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運(yùn)動,同時,點(diǎn)R從O出發(fā)沿OM方向以
2
個單位每秒速度運(yùn)動,運(yùn)動時間為t,求:
(1)直接寫出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△ANO與△DMR相似?
(4)求以A、B、C、R為頂點(diǎn)的四邊形是梯形時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點(diǎn),以O(shè)為圓心,OA長為半徑的⊙0與BC相切于點(diǎn)M,與AB、AD分別相交于點(diǎn)E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案