【題目】如圖,E,F分別是等邊△ABC邊AB,AC上的點(diǎn),且AE=CF,CE,BF交于點(diǎn)P.
(1)證明:CE=BF;
(2)求∠BPC的度數(shù).
![]()
【答案】(1)見解析;(2)∠BPC=120°.
【解析】
(1)欲證明CE=BF,只需證得△BCE≌△ABF;
(2)利用(1)中的全等三角形的性質(zhì)得到∠BCE=∠ABF,則由圖示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根據(jù)三角形內(nèi)角和定理求得∠BPC=120°.
證明:(1)∵△ABC是等邊三角形,
∴BC=AB,∠A=∠EBC=60°,
∴在△BCE與△ABF中,
,
∴△BCE≌△ABF(SAS),
∴CE=BF;
(2)∵由(1)知△BCE≌△ABF,
∴∠BCE=∠ABF,
∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,
∴∠BPC=180°﹣60°=120°.
即:∠BPC=120°.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小欣設(shè)計(jì)的“利用等腰三角形做菱形”的尺規(guī)作圖過程.
己知:等腰![]()
求作:點(diǎn)
,使得四邊形
為菱形.
做法:①作
的角平分線
,交線段
于點(diǎn)
;
②以點(diǎn)
為圓心,
長為半徑圓弧,交
的延長線于點(diǎn)
;
③連接
,所以四邊形
為菱形,點(diǎn)
即為所求.
![]()
根據(jù)小新設(shè)計(jì)的尺規(guī)作圖過程.
(1)使用直尺和圓規(guī)補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:
平分
,
(______________________________________)(填推理的依據(jù))
![]()
∴四邊形
為平行四邊形(______________________________________)(填推理的依據(jù))
,
∴四邊形
為菱形(______________________________________)(填推理的依據(jù))
(3)請你設(shè)計(jì)一種不同于小欣的,利用等腰
(其中
)作菱形
的方法.
要求:寫出簡要思路,并尺規(guī)作圖.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=
的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=
的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在一個(gè)盒子旦有紅球和白球共10個(gè),它們除顏色外都相同,將它們充分搖勻后,從中隨機(jī)抽出一個(gè),記下顏色后放回.在摸球活動中得到如下數(shù)據(jù):
摸球總次數(shù) | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
摸到紅球的頻率 | 17 | 32 | 44 | 64 | 78 | a | 103 | 122 | 136 | 148 |
摸到紅球的頻率 | 0.34 | 0.32 | 0.293 | 0.32 | 0.312 | 0.32 | 0.294 | b | 0.302 | c |
(1)請將表格中的數(shù)據(jù)補(bǔ)齊a= ;b= ;c= ;
(2)根據(jù)上表,完成折線統(tǒng)計(jì)圖;
![]()
當(dāng)摸球次數(shù)很大時(shí),摸到紅球的頻率將會接近 (精確到0.1)
(3)請你估計(jì),當(dāng)摸球次數(shù)很大時(shí),摸到紅球的頻率將會接近 (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
①線段DE與AC的位置關(guān)系是_________;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是____________.
![]()
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,DE//AB交BC于點(diǎn)E(如圖4).若在射線BA上存在點(diǎn)F,使
,請直接寫出相應(yīng)的BF的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)
(k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式及點(diǎn)B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)
(k≠0)的值時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)
的圖象交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,1).
(1)求正比例函數(shù)、反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點(diǎn)M,且DM=2,平行四邊形ABCD的周長是14,則BC的長等于( 。
![]()
A. 2B. 2.5C. 3D. 3.5
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com