如圖,△ABC和△ADE都是等腰直角三角形,CE與BD相交于點(diǎn)M,BD交AC于點(diǎn)N,
![]()
證明:(1)BD=CE. (2)BD⊥CE.
略
【解析】(1)要證明BD=CE,只要證明△ABD≌△ACE即可,兩三角形中,已知的條件有AD=AE,AB=AC,那么只要再得出兩對應(yīng)邊的夾角相等即可得出三角形全等的結(jié)論.我們發(fā)現(xiàn)∠BAD和∠EAC都是90°加上一個(gè)∠CAD,因此∠CAE=∠BAD.由此構(gòu)成了兩三角形全等中的(SAS)因此兩三角形全等.
(2)要證BD⊥CE,只要證明∠BMC是個(gè)直角就行了.由(1)得出的全等三角形我們可知:
∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根據(jù)上面的相等角,我們可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角了.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江建三江分局八年級(jí)上學(xué)期期末調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖:△ABC和△ADE是等邊三角形,證明:BD=CE.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com