【題目】如圖,⊙O中,弦CD與直徑AB交于點H.若DH=CH=
,BD=4,
(1)AB的長為______.
(2)弧BD的長為________.
![]()
【答案】(1)8;(2)
.
【解析】
(1)根據(jù)垂徑定理和勾股定理得出即可;根據(jù)勾股定理求出BH,根據(jù)勾股定理得出關(guān)于R的方程,求出R即可.
(1)連接OD,根據(jù)垂弦定理推論知道Rt△BHD中,BD=4,HD=
,
由勾股定理得:BH=
=2
![]()
∵AB⊥CD,
∴∠BHD=90°,
設(shè)⊙O的半徑為R,則AB=2R,OB=OD=R,
在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,
即(R﹣1)2+(
)2=R2,
解得:R=4,
∴AB=2×4=8.
故答案為:8.
(2)由(1)知道OB=OD=BD,所以弧BD所對的圓心角為60度,弧長為:
L=
=
=
.
故答案為:
.
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進價和標價分別是多少元?
(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計,當每輛車的月租金為3000元時,可全部租出.每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達到306600元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將水平放置的三角板ABC繞直角頂點A逆時針旋轉(zhuǎn),得到△AB'C',連結(jié)并延長BB'、C'C相交于點P,其中∠ABC=30°,BC=4.
(1)若記B'C'中點為點D,連結(jié)PD,則PD=_____;
(2)若記點P到直線AC'的距離為d,則d的最大值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形OABC的邊長為5,且tan∠AOC=
,點E是線段BC的中點,過點A、E的拋物線y=ax2+bx+c與邊AB交于點D.
![]()
(1)求點A和點E的坐標;
(2)連結(jié)DE,將△BDE沿著DE翻折.
①當點B的對應(yīng)點B'恰好落在線段AC上時,求點D的坐標;
②連接OB、BB',請直接寫出此時該拋物線二次項系數(shù)a= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD中,BF平分∠ABC交AD于點F,CE平分∠DCB交AD于點E,BF和CE相交于點P.
![]()
(1)求證:AE=DF.
(2)已知AB=4,AD=5.
①求
的值;
②求四邊形ABPE的面積與△BPC的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,O為AC上一點,以點O為圓心,OC為半徑做圓,與BC相切于點C,過點A作AD⊥BO交BO的廷長線于點D,且∠AOD=∠BAD.
![]()
(1)求證:AB為⊙O的切線;
(2)若BC=6,tan∠ABC=
,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中AB=BC,將△ABC繞點C順時針旋轉(zhuǎn)α角時,點A的對應(yīng)點A′恰好落在AB邊上,則∠A′CB=_____(用含α的式子來表示).
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com