如圖,四邊形ABCD是正方形,點(diǎn)E,K分別在BC,AB上,點(diǎn)G在BA的延長線上,且CE=BK=AG.
(1)求證:①DE=DG;②DE⊥DG
(2)尺規(guī)作圖:以線段DE,DG為邊作出正方形DEFG(要求:只保留作圖痕跡,不寫作法和證明);
(3)連接(2)中的KF,猜想并寫出四邊形CEFK是怎樣的特殊四邊形,并證明你的猜想:
(4)當(dāng)
時(shí),請直接寫出
的值.
|
分析:(1)由已知證明DE、DG所在的三角形全等,再通過等量代換證明DE⊥DG; (2)根據(jù)正方形的性質(zhì)分別以點(diǎn)G、E為圓心以DG為半徑畫弧交點(diǎn)F,得到正方形DEFG; (3)由已知首先證四邊形CKGD是平行四邊形,然后證明四邊形CEFK為平行四邊形; (4)由已知表示出 解答:(1)證明:∵四邊形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如圖.
(3)四邊形CEFK為平行四邊形. 證明:設(shè)CK、DE相交于M點(diǎn), ∵四邊形ABCD和四邊形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四邊形CKGD是平行四邊形, ∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四邊形CEFK為平行四邊形. (4) 點(diǎn)評:此題考查的知識點(diǎn)是正方形的性質(zhì)、全等三角形的判定和性質(zhì)、平行四邊形的判定及作圖,解題的關(guān)鍵是先由正方形的性質(zhì)通過證三角形全等得出結(jié)論,此題較復(fù)雜. |
|
正方形的性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的判定;作圖-復(fù)雜作圖. |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com