如圖,在△ABC中,∠C= 90°,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若AC=6,AB= 10,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.
![]()
(1)連接OD. 設(shè)⊙O的半徑為r.
∵BC切⊙O于點(diǎn)D,∴OD⊥BC.
∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.
∴
=
,即
=
. 解得r =
,
∴⊙O的半徑為
.
(2)四邊形OFDE是菱形.
∵四邊形BDEF是平行四邊形,∴∠DEF=∠B.
∵∠DEF=
∠DOB,∴∠B=
∠DOB.
∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等邊三角形.
∴OD=DE.∵OD=OF,∴DE=OF.
∴四邊形OFDE是平行四邊形.
∵OE=OF,∴平行四邊形OFDE是菱形.
![]()
第29題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com