【題目】如圖,在Rt△ABC中,AC=24cm,BC=7cm,P點在BC上,從B點到C點運動(不包括C點),點P運動的速度為2cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為5cm/s.若點P、Q分別從B、C同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當t為何值時,P、Q兩點的距離為5
cm?
(2)當t為何值時,△PCQ的面積為15cm2?
(3)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最?最小面積是多少?
![]()
【答案】(1)t=1;(2)經(jīng)過2或1.5s后,S△PCQ的面積為15cm2;(3)當點P運動1.75秒時,四邊形BPQA的面積最小為:
cm2.
【解析】(1)根據(jù)勾股定理PC2+CQ2=PQ2,便可求出經(jīng)過1s后,P、Q兩點的距離為
cm2;
(2)根據(jù)三角形的面積公式
便可求出經(jīng)過2或1.5s后,S△PCQ的面積為15 cm2;
(3)根據(jù)三角形的面積公式
以及二次函數(shù)最值便可求出t=1.75s時△PCQ的面積最大,進而求出四邊形BPQA的面積最小值.
解:(1)∵在Rt△ABC中,AC=24cm,BC=7cm,
∴AB=25cm,
設(shè)經(jīng)過ts后,P、Q兩點的距離為5
cm,
ts后,PC=7-2t cm,CQ=5t cm,
根據(jù)勾股定理可知PC2+CQ2=PQ2,
代入數(shù)據(jù)(7-2t)2+(5t)2=(5
)2;
解得t=1或t=-
(不合題意舍去);
(2)設(shè)經(jīng)過ts后,S△PCQ的面積為15cm2
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
=
×(7-2t)×5t=15
解得t1=2,t2=1.5,
經(jīng)過2或1.5s后,S△PCQ的面積為15cm2
(3)設(shè)經(jīng)過ts后,△PCQ的面積最大,則此時四邊形BPQA的面積最小,
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
×PC×CQ=
×(7-2t)×5t=
×(-2t2+7t)
當t=-
時,即t=
=1.75s時,△PCQ的面積最大,
即S△PCQ=
×PC×CQ=
×(7-2×1.75)×5×1.752=
(cm2),
∴四邊形BPQA的面積最小值為:S△ABC-S△PCQ最大=
×7×24-
=
(cm2),
當點P運動1.75秒時,四邊形BPQA的面積最小為:
cm2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B'C'的位似比;
(3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A'B'C'關(guān)于點 O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下面的解題過程的橫線上填空,并在括號內(nèi)注明理由。
如圖,已知∠A=∠F,∠C=∠D,試說明BD∥CE.
![]()
解:∵∠A=∠F(已知)
∴DF∥AC(_____________________)
∴∠D=_____(______________________)
∵∠C=∠D(已知)
∴∠1=_____(___________________)
∴BD∥CE(_______________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在
中,
,
,點
為
的中點,點
分別為
邊上的動點.
(1)若點
分別為
的中點,求線段
的長;
(2)若
,
①求證:
∽
;
②試問
與
相似嗎?并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y1=
的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2),
(1)求這兩個函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍;
(3)如果點C與點A關(guān)于x軸對稱,求△ABC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y1=170﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤為1950萬元?
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為( 。
![]()
A. 31° B. 28° C. 62° D. 56°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將長為20cm,寬為8cm的長方形白紙,按如圖所示的方式粘合起來,粘合部分的寬為3cm.
根據(jù)題意,將下面的表格補充完整:
白紙張數(shù) | 1 | 2 | 3 | 4 | 5 |
|
紙條長度 | 20 | ______ | 54 | 71 | ______ |
|
直接寫出用x表示y的關(guān)系式:______ ;
要使粘合后的總長度為1006cm,需用多少張這樣的白紙?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙
半徑為
,
是⊙
的直徑,
是⊙
上一點,連接
,⊙
外的一點
在直線
上.
(
)若
,
.
①求證:
是⊙
的切線.
②陰影部分的面積是__________.(結(jié)果保留
)
(
)當點
在⊙
上運動時,若
是⊙
的切線,探究
與
的數(shù)量關(guān)系.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com