【題目】解答
(1)先化簡再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.
(2)解不等式組:
.
【答案】
(1)解:a(1﹣4a)+(2a+1)(2a﹣1)
=a﹣4a2+4a2﹣1
=a﹣1,
當a=4時,原式=4﹣1=3
(2)
∵解不等式①得:x≤3,
解不等式②得:x≥﹣2,
∴不等式組的解集為﹣2≤x≤3
【解析】(1)先算乘法,再合并同類項,最后代入求出即可;(2)先求出每個不等式的解集,再根據(jù)找不等式組解集的規(guī)律找出不等式組的解集即可.本題考查了整式的混合運算和求值,解一元一次不等式組的應用,能正確根據(jù)整式的運算法則進行化簡是解(1)的關鍵,能根據(jù)找不等式組解集的規(guī)律找出不等式組的解集是解(2)的關鍵.
【考點精析】通過靈活運用一元一次不等式組的解法,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )
![]()
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=
AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為( ) ![]()
A.![]()
B.4 ![]()
C.2 ![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現(xiàn)故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經(jīng)過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數(shù)圖象,下列四種說法:
①甲車提速后的速度是60千米/時;
②乙車的速度是96千米/時;
③乙車返回時y與x的函數(shù)關系式為y=﹣96x+384;
④甲車到達B市乙車已返回A市2小時10分鐘.
其中正確的個數(shù)是( 。
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com